Skip to main content

PSGMM: Pulmonary Segment Segmentation Based on Gaussian Mixture Model

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15275))

Included in the following conference series:

  • 109 Accesses

Abstract

The lung exhibits a complex hierarchical structure comprising lobes and pulmonary segments. With recent advancements in lung cancer treatment, there’s a growing demand for precise segmentation between lung segments. However, there is a challenge that segments are not differentiated by visual features, but outlined by invisible borders constructed from the border of each lobe, bronchus, pulmonary artery, and vein. To tackle the issue, we introduce a novel framework for determining intersegmental border within a lobe, the Pulmonary Segment segmentation model based on the point-cloud Gaussian Mixture Model (PSGMM). PSGMM takes the bronchus, artery, vein, and lobe surface in point-cloud form, to construct the probability map of each segment in the form of a Gaussian mixture model. PSGMM is designed to emulate a physician’s examination mechanism by considering anatomical features and provides reliable and promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Giuliani, N., Payer, C., Pienn, M., Olschewski, H., Urschler, M.: Pulmonary lobe segmentation in CT images using alpha-expansion. In: VISIGRAPP (4: VISAPP), pp. 387–394 (2018)

    Google Scholar 

  2. Gupta, S., Zhang, Y., Hu, X., Prasanna, P., Chen, C.: Topology-aware uncertainty for image segmentation. In: Advances in Neural Information Processing Systems, vol. 36 (2024)

    Google Scholar 

  3. Hatamizadeh, A., et al.: UNetr: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 574–584 (2022)

    Google Scholar 

  4. Hertz, A., Hanocka, R., Giryes, R., Cohen-Or, D.: PointGMM: a neural GMM network for point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  5. Kanopoulos, N., Vasanthavada, N., Baker, R.L.: Design of an image edge detection filter using the Sobel operator. IEEE J. Solid-State Circuits 23(2), 358–367 (1988)

    Article  Google Scholar 

  6. Kerfoot, E., Clough, J.R., Öksüz, I., Lee, J., King, A.P., Schnabel, J.A.: Left-ventricle quantification using residual u-net. In: STACOM@MICCAI (2018). https://api.semanticscholar.org/CorpusID:68245372

  7. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) ICLR (2015)

    Google Scholar 

  8. Kuang, K., et al.: What makes for automatic reconstruction of pulmonary segments. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (2022)

    Google Scholar 

  9. Lei, T., Sun, R., Wang, X., Wang, Y., He, X., Nandi, A.: CIT-Net: convolutional neural networks hand in hand with vision transformers for medical image segmentation. arXiv preprint arXiv:2306.03373 (2023)

  10. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer vision, pp. 2980–2988 (2017)

    Google Scholar 

  11. Liu, X., et al.: Three-dimensional printing in the preoperative planning of thoracoscopic pulmonary segmentectomy. Transl. Lung Cancer Res. 8(6), 929–937 (2019). https://doi.org/10.21037/tlcr.2019.11.27

  12. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2019)

    Google Scholar 

  13. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  14. Oizumi, H., Kato, H., Endoh, M., Inoue, T., Watarai, H., Sadahiro, M.: Techniques to define segmental anatomy during segmentectomy. Ann. Cardioth. Surg. 3(2), 170–175 (2014). https://doi.org/10.3978/j.issn.2225-319X.2014.02.03

    Article  Google Scholar 

  15. Qin, Y., et al.: AirwayNet: a voxel-connectivity aware approach for accurate airway segmentation using convolutional neural networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 212–220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_24

    Chapter  Google Scholar 

  16. Qin, Y., et al.: Learning tubule-sensitive CNNs for pulmonary airway and artery-vein segmentation in CT. IEEE Trans. Med. Imaging 40(6), 1603–1617 (2021)

    Article  Google Scholar 

  17. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graphics (TOG) (2019)

    Google Scholar 

  18. Zhang, M., Zhang, H., Yang, G.Z., Gu, Y.: Cfda: Collaborative feature disentanglement and augmentation for pulmonary airway tree modeling of covid-19 cts. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13431, pp. 506–516. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_48

    Chapter  Google Scholar 

  19. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI22C1496)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koh, S. et al. (2025). PSGMM: Pulmonary Segment Segmentation Based on Gaussian Mixture Model. In: Wachinger, C., Paniagua, B., Elhabian, S., Luijten, G., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2024. Lecture Notes in Computer Science, vol 15275. Springer, Cham. https://doi.org/10.1007/978-3-031-75291-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75291-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75290-2

  • Online ISBN: 978-3-031-75291-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics