Skip to main content

Implicitly Explicit: Segmenting Vertebrae with Deep Implicit Statistical Shape Models

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2024)

Abstract

Convolutional- or transformer-based neural networks have become a de facto standard for semantic image segmentation. While networks trained on volumetric medical images achieve state-of-the-art performance, their predictions may lack anatomical plausibility because the shape of target structures is only implicitly learned with no underlying constraints. Statistical shape models offer an interpretable alternative, as they ensure anatomical consistency, produce high-quality surfaces, and minimize outlier predictions by enforcing the segmented shapes to resemble the distribution of training shapes. This study revisits the innovative concept of deep implicit statistical shape models (DISSMs) that leverage the idea of the signed distance function for their construction. We propose a strategy that enhances DISSMs by controlling their overfitting, evaluating the quality of the learned latent space, and estimating the upper-bound performance of pose estimation. The proposed enhanced DISSMs were trained on 580, validated on 130 and applied to segment 210 lumbar vertebrae in publicly available computed tomography spine images, yielding a Dice coefficient of \(87.2\,{\pm }\,2.9\)% and 95th percentile Hausdorff distance of \(2.81\,{\pm }\,0.99\) mm. Although not reaching the performance of conventional deep learning semantic segmentation, this novel approach offers an efficient detection of segmentation outliers by quantifying the resulting shape plausibility, hence providing additional insight into the interpretability of deep segmentation models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/siavashk/pycpd.

  2. 2.

    https://github.com/AshStuff/dissm.

  3. 3.

    https://pypi.org/project/mesh-to-sdf/.

References

  1. Bhalodia, R., Elhabian, S.Y., Kavan, L., Whitaker, R.T.: DeepSSM: a deep learning framework for statistical shape modeling from raw images. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 244–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_23

    Chapter  Google Scholar 

  2. Bohlender, S., Oksuz, I., Mukhopadhyay, A.: A survey on shape-constraint deep learning for medical image segmentation. IEEE Rev. Biomed. Eng. 16, 225–240 (2023). https://doi.org/10.1109/RBME.2021.3136343

    Article  Google Scholar 

  3. Borys, K., Schmitt, Y.A., Nauta, M., et al.: Explainable AI in medical imaging: an overview for clinical practitioners - beyond saliency-based XAI approaches. Eur. J. Radiol. 162, 110786 (2023). https://doi.org/10.1016/j.ejrad.2023.110786

    Article  Google Scholar 

  4. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 62, 38–59 (1995). https://doi.org/10.1006/cviu.1995.1004

    Article  Google Scholar 

  5. Deng, Y., Wang, C., Hui, Y., et al.: CTSpine1K: a large-scale dataset for spinal vertebrae segmentation in computed tomography. arXiv:2105.14711v3 (2021). https://doi.org/10.48550/arXiv.2105.14711

  6. El Jurdi, R., Petitjean, C., Honeine, P., Cheplygina, V., Abdallah, F.: High-level prior-based loss functions for medical image segmentation: a survey. Comput. Vis. Image Underst. 210, 103248 (2021). https://doi.org/10.1016/j.cviu.2021.103248

    Article  Google Scholar 

  7. Garland, M., Heckbert, P.S.: Simplifying surfaces with color and texture using quadric error metrics. In: IEEE Visualization Conference - Visualization 1998, pp. 263–270. IEEE (1998). https://doi.org/10.1109/VISUAL.1998.745312

  8. Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13, 543–563 (2009). https://doi.org/10.1016/j.media.2009.05.004

    Article  Google Scholar 

  9. Klinder, T., Ostermann, J., Ehmb, M., Franz, A., Kneser, R., Lorenz, C.: Automated model-based vertebra detection, identification, and segmentation in CT images. Med. Image Anal. 13, 471–482 (2009). https://doi.org/10.1016/j.media.2009.02.004

    Article  Google Scholar 

  10. Korez, R., Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T.: A framework for automated spine and vertebrae interpolation-based detection and model-based segmentation. IEEE Trans. Med. Imaging 34, 1649–1662 (2015). https://doi.org/10.1109/TMI.2015.2389334

    Article  Google Scholar 

  11. Lee, M.C.H., Petersen, K., Pawlowski, N., Glocker, B., Schaap, M.: TETRIS: template transformer networks for image segmentation with shape priors. IEEE Trans. Med. Imaging 38, 2596–2606 (2019). https://doi.org/10.1109/TMI.2019.2905990

    Article  Google Scholar 

  12. Liebl, H., Schinz, D., Sekuboyina, A., et al.: A computed tomography vertebral segmentation dataset with anatomical variations and multi-vendor scanner data. Sci. Data 8, 284 (2021). https://doi.org/10.1038/s41597-021-01060-0

    Article  Google Scholar 

  13. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: 14th Conference on Computer Graphics and Interactive Techniques - SIGGRAPH 1987, pp. 163–169. ACM (1987). https://doi.org/10.1145/37401.37422

  14. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations - ICLR 2019, pp. 263–270. OpenReview.net (2019). https://doi.org/10.48550/arXiv.1711.05101

  15. Ma, J., Chen, J., Ng, M., et al.: Loss odyssey in medical image segmentation. Med. Image Anal. 71, 102035 (2021). https://doi.org/10.1016/j.media.2021.102035

    Article  Google Scholar 

  16. Milletari, F., Rothberg, A., Jia, J., Sofka, M.: Integrating statistical prior knowledge into convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 161–168. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_19

    Chapter  Google Scholar 

  17. Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32, 2262–2275 (2010). https://doi.org/10.1109/TPAMI.2010.46

    Article  Google Scholar 

  18. Nikolov, S., Blackwell, S., Zverovitch, A., et al.: Clinically applicable segmentation of head and neck anatomy for radiotherapy: deep learning algorithm development and validation study. J. Med. Internet Res. 23, e26151 (2021). https://doi.org/10.2196/26151

    Article  Google Scholar 

  19. Ocepek, D., Podobnik, G., Ibragimov, B., Vrtovec, T.: Deep implicit statistical shape models for 3D lumbar vertebrae image delineation. In: SPIE Medical Imaging 2024: Image Processing, pp. 12926–115. SPIE (2024). https://doi.org/10.1117/12.3007664

  20. Oktay, O., Ferrante, E., Kamnitsas, K., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37, 384–395 (2018). https://doi.org/10.1109/TMI.2017.2743464

    Article  Google Scholar 

  21. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition - CVPR 2019, pp. 165–174. IEEE (2019). https://doi.org/10.1109/CVPR.2019.00025

  22. Raju, A., Miao, S., Jin, D., Lu, L., Huang, J., Harrison, A.P.: Deep implicit statistical shape models for 3D medical image delineation. In: 36th AAAI Conference on Artificial Intelligence - AAAI 2022, vol. 36, pp. 2135–2143. AAAI (2022). https://doi.org/10.1609/aaai.v36i2.20110

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Sekuboyina, A., Husseini, M.E., Bayat, A., et al.: VerSe: a vertebrae labelling and segmentation benchmark for multi-detector CT images. Med. Image Anal. 73, 102166 (2021). https://doi.org/10.1016/j.media.2021.102166

    Article  Google Scholar 

  25. Taghanaki, S.A., Abhishek, K., Cohen, J.P., Cohen-Adad, J., Hamarneh, G.: Deep semantic segmentation of natural and medical images: a review. Artif. Intell. Rev. 54, 137–178 (2021). https://doi.org/10.1007/s10462-020-09854-1

    Article  Google Scholar 

  26. Tao, R., Liu, W., Zheng, G.: Spine-transformers: vertebra labeling and segmentation in arbitrary field-of-view spine CTs via 3D transformers. Med. Image Anal. 75, 102258 (2022). https://doi.org/10.1016/j.media.2021.102258

    Article  Google Scholar 

  27. Taubin, G.: A signal processing approach to fair surface design. In: 22nd Conference on Computer Graphics and Interactive Techniques - SIGGRAPH 1995, pp. 351–358. ACM (1995). https://doi.org/10.1145/218380.218473

  28. Tilborghs, S., Bogaert, J., Maes, F.: Shape constrained CNN for segmentation guided prediction of myocardial shape and pose parameters in cardiac MRI. Med. Image Anal. 81, 102533 (2022). https://doi.org/10.1016/j.media.2022.102533

    Article  Google Scholar 

  29. Ying, X.: An overview of overfitting and its solutions. J. Phys: Conf. Ser. 1168, 022022 (2019). https://doi.org/10.1088/1742-6596/1168/2/022022

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Slovenian Research and Innovation Agency (ARIS) under projects No. J2-4453 and P2-0232, and by the European Union Horizon project ARTILLERY under grant agreement No. 101080983.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gašper Podobnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Podobnik, G., Ocepek, D., Škrlj, L., Vrtovec, T. (2025). Implicitly Explicit: Segmenting Vertebrae with Deep Implicit Statistical Shape Models. In: Wachinger, C., Paniagua, B., Elhabian, S., Luijten, G., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2024. Lecture Notes in Computer Science, vol 15275. Springer, Cham. https://doi.org/10.1007/978-3-031-75291-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75291-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75290-2

  • Online ISBN: 978-3-031-75291-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics