Abstract
Convolutional- or transformer-based neural networks have become a de facto standard for semantic image segmentation. While networks trained on volumetric medical images achieve state-of-the-art performance, their predictions may lack anatomical plausibility because the shape of target structures is only implicitly learned with no underlying constraints. Statistical shape models offer an interpretable alternative, as they ensure anatomical consistency, produce high-quality surfaces, and minimize outlier predictions by enforcing the segmented shapes to resemble the distribution of training shapes. This study revisits the innovative concept of deep implicit statistical shape models (DISSMs) that leverage the idea of the signed distance function for their construction. We propose a strategy that enhances DISSMs by controlling their overfitting, evaluating the quality of the learned latent space, and estimating the upper-bound performance of pose estimation. The proposed enhanced DISSMs were trained on 580, validated on 130 and applied to segment 210 lumbar vertebrae in publicly available computed tomography spine images, yielding a Dice coefficient of \(87.2\,{\pm }\,2.9\)% and 95th percentile Hausdorff distance of \(2.81\,{\pm }\,0.99\) mm. Although not reaching the performance of conventional deep learning semantic segmentation, this novel approach offers an efficient detection of segmentation outliers by quantifying the resulting shape plausibility, hence providing additional insight into the interpretability of deep segmentation models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bhalodia, R., Elhabian, S.Y., Kavan, L., Whitaker, R.T.: DeepSSM: a deep learning framework for statistical shape modeling from raw images. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 244–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_23
Bohlender, S., Oksuz, I., Mukhopadhyay, A.: A survey on shape-constraint deep learning for medical image segmentation. IEEE Rev. Biomed. Eng. 16, 225–240 (2023). https://doi.org/10.1109/RBME.2021.3136343
Borys, K., Schmitt, Y.A., Nauta, M., et al.: Explainable AI in medical imaging: an overview for clinical practitioners - beyond saliency-based XAI approaches. Eur. J. Radiol. 162, 110786 (2023). https://doi.org/10.1016/j.ejrad.2023.110786
Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 62, 38–59 (1995). https://doi.org/10.1006/cviu.1995.1004
Deng, Y., Wang, C., Hui, Y., et al.: CTSpine1K: a large-scale dataset for spinal vertebrae segmentation in computed tomography. arXiv:2105.14711v3 (2021). https://doi.org/10.48550/arXiv.2105.14711
El Jurdi, R., Petitjean, C., Honeine, P., Cheplygina, V., Abdallah, F.: High-level prior-based loss functions for medical image segmentation: a survey. Comput. Vis. Image Underst. 210, 103248 (2021). https://doi.org/10.1016/j.cviu.2021.103248
Garland, M., Heckbert, P.S.: Simplifying surfaces with color and texture using quadric error metrics. In: IEEE Visualization Conference - Visualization 1998, pp. 263–270. IEEE (1998). https://doi.org/10.1109/VISUAL.1998.745312
Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13, 543–563 (2009). https://doi.org/10.1016/j.media.2009.05.004
Klinder, T., Ostermann, J., Ehmb, M., Franz, A., Kneser, R., Lorenz, C.: Automated model-based vertebra detection, identification, and segmentation in CT images. Med. Image Anal. 13, 471–482 (2009). https://doi.org/10.1016/j.media.2009.02.004
Korez, R., Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T.: A framework for automated spine and vertebrae interpolation-based detection and model-based segmentation. IEEE Trans. Med. Imaging 34, 1649–1662 (2015). https://doi.org/10.1109/TMI.2015.2389334
Lee, M.C.H., Petersen, K., Pawlowski, N., Glocker, B., Schaap, M.: TETRIS: template transformer networks for image segmentation with shape priors. IEEE Trans. Med. Imaging 38, 2596–2606 (2019). https://doi.org/10.1109/TMI.2019.2905990
Liebl, H., Schinz, D., Sekuboyina, A., et al.: A computed tomography vertebral segmentation dataset with anatomical variations and multi-vendor scanner data. Sci. Data 8, 284 (2021). https://doi.org/10.1038/s41597-021-01060-0
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: 14th Conference on Computer Graphics and Interactive Techniques - SIGGRAPH 1987, pp. 163–169. ACM (1987). https://doi.org/10.1145/37401.37422
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations - ICLR 2019, pp. 263–270. OpenReview.net (2019). https://doi.org/10.48550/arXiv.1711.05101
Ma, J., Chen, J., Ng, M., et al.: Loss odyssey in medical image segmentation. Med. Image Anal. 71, 102035 (2021). https://doi.org/10.1016/j.media.2021.102035
Milletari, F., Rothberg, A., Jia, J., Sofka, M.: Integrating statistical prior knowledge into convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 161–168. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_19
Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32, 2262–2275 (2010). https://doi.org/10.1109/TPAMI.2010.46
Nikolov, S., Blackwell, S., Zverovitch, A., et al.: Clinically applicable segmentation of head and neck anatomy for radiotherapy: deep learning algorithm development and validation study. J. Med. Internet Res. 23, e26151 (2021). https://doi.org/10.2196/26151
Ocepek, D., Podobnik, G., Ibragimov, B., Vrtovec, T.: Deep implicit statistical shape models for 3D lumbar vertebrae image delineation. In: SPIE Medical Imaging 2024: Image Processing, pp. 12926–115. SPIE (2024). https://doi.org/10.1117/12.3007664
Oktay, O., Ferrante, E., Kamnitsas, K., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37, 384–395 (2018). https://doi.org/10.1109/TMI.2017.2743464
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition - CVPR 2019, pp. 165–174. IEEE (2019). https://doi.org/10.1109/CVPR.2019.00025
Raju, A., Miao, S., Jin, D., Lu, L., Huang, J., Harrison, A.P.: Deep implicit statistical shape models for 3D medical image delineation. In: 36th AAAI Conference on Artificial Intelligence - AAAI 2022, vol. 36, pp. 2135–2143. AAAI (2022). https://doi.org/10.1609/aaai.v36i2.20110
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sekuboyina, A., Husseini, M.E., Bayat, A., et al.: VerSe: a vertebrae labelling and segmentation benchmark for multi-detector CT images. Med. Image Anal. 73, 102166 (2021). https://doi.org/10.1016/j.media.2021.102166
Taghanaki, S.A., Abhishek, K., Cohen, J.P., Cohen-Adad, J., Hamarneh, G.: Deep semantic segmentation of natural and medical images: a review. Artif. Intell. Rev. 54, 137–178 (2021). https://doi.org/10.1007/s10462-020-09854-1
Tao, R., Liu, W., Zheng, G.: Spine-transformers: vertebra labeling and segmentation in arbitrary field-of-view spine CTs via 3D transformers. Med. Image Anal. 75, 102258 (2022). https://doi.org/10.1016/j.media.2021.102258
Taubin, G.: A signal processing approach to fair surface design. In: 22nd Conference on Computer Graphics and Interactive Techniques - SIGGRAPH 1995, pp. 351–358. ACM (1995). https://doi.org/10.1145/218380.218473
Tilborghs, S., Bogaert, J., Maes, F.: Shape constrained CNN for segmentation guided prediction of myocardial shape and pose parameters in cardiac MRI. Med. Image Anal. 81, 102533 (2022). https://doi.org/10.1016/j.media.2022.102533
Ying, X.: An overview of overfitting and its solutions. J. Phys: Conf. Ser. 1168, 022022 (2019). https://doi.org/10.1088/1742-6596/1168/2/022022
Acknowledgments
This study was supported by the Slovenian Research and Innovation Agency (ARIS) under projects No. J2-4453 and P2-0232, and by the European Union Horizon project ARTILLERY under grant agreement No. 101080983.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Podobnik, G., Ocepek, D., Škrlj, L., Vrtovec, T. (2025). Implicitly Explicit: Segmenting Vertebrae with Deep Implicit Statistical Shape Models. In: Wachinger, C., Paniagua, B., Elhabian, S., Luijten, G., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2024. Lecture Notes in Computer Science, vol 15275. Springer, Cham. https://doi.org/10.1007/978-3-031-75291-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-75291-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75290-2
Online ISBN: 978-3-031-75291-9
eBook Packages: Computer ScienceComputer Science (R0)