Skip to main content

3D Body Twin: Improving Human Gait Visualizations Using Personalized Avatars

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2024)

Abstract

We propose an interactive visualization and reconstruction system for gait pattern analysis that creates a more realistic visualization of the patient than contemporary stick figure-like representations. It supports thorough gait pattern analysis, and enables unbiased inter- and intra-patient comparisons as well as longitudinal studies. Our system takes as input 3D motion capture data, but can be further constrained using readily available metadata or layman-accessible measurements. A statistical shape model is then fitted to the motion capture and personal metadata. The result is an immediate and interactive visualization of an animated 3D twin. Our system handles different marker setups and can thus be applied to already existing data. We further show that we can infer realistic body models with only a few of markers. A survey with medical experts confirms the clinical applicability of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. ACM Trans. Graph. 24(3), 408-416 (2005). https://doi.org/10.1145/1073204.1073207

  2. Bogo, F., Romero, J., Pons-Moll, G., Black, M.J.: Dynamic FAUST: registering human bodies in motion. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  3. Cheng, Z.Q., Chen, Y., Martin, R.R., Wu, T., Song, Z.: Parametric modeling of 3D human body shape-a survey. Comput. Graph. 71, 88–100 (2018). https://doi.org/10.1016/j.cag.2017.11.008. https://www.sciencedirect.com/science/article/pii/S0097849317301929

  4. Choutas, V., Müller, L., Huang, C.H.P., Tang, S., Tzionas, D., Black, M.J.: Accurate 3D body shape regression using metric and semantic attributes. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  5. Delp, S.L., et al.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)

    Article  Google Scholar 

  6. Graham, R.: An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett. 1(4), 132–133 (1972). https://doi.org/10.1016/0020-0190(72)90045-2. https://www.sciencedirect.com/science/article/pii/0020019072900452

  7. Guo, H., Planche, B., Zheng, M., Karanam, S., Chen, T., Wu, Z.: SMPL-A: modeling person-specific deformable anatomy. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20814–20823, June 2022

    Google Scholar 

  8. Heymsfield, S.B., Wang, J., Kehayias, J., Heshka, S., Lichtman, S., Pierson, R.N.: Chemical determination of human body density in vivo: relevance to hydrodensitometry. Am. J. Clin. Nutr. 50(6), 1282–1289 (1989). https://doi.org/10.1093/ajcn/50.6.1282. https://www.sciencedirect.com/science/article/pii/S0002916523437021

  9. Keller, M., et al.: From skin to skeleton: towards biomechanically accurate 3d digital humans. In: ACM ToG, Proceedings of the SIGGRAPH Asia, vol. 42, December 2023

    Google Scholar 

  10. Keller, M., Zuffi, S., Black, M.J., Pujades, S.: OSSO: obtaining skeletal shape from outside. In: Proceedings IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20492–20501, June 2022

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. Published as a conference paper at the 3rd International Conference for Learning Representations, San Diego 2015 (2014). https://arxiv.org/abs/1412.6980

  12. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 34(6), 248:1–248:16 (2015)

    Google Scholar 

  13. Osman, A.A.A., Bolkart, T., Black, M.J.: STAR: sparse trained articulated human body regressor. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 598–613. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_36. https://star.is.tue.mpg.de

  14. Osman, A.A.A., Bolkart, T., Tzionas, D., Black, M.J.: SUPR: a sparse unified part-based human body model. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCSS, vol. 13662, pp. 568–585. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20086-1_33. https://supr.is.tue.mpg.de

  15. Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10975–10985 (2019)

    Google Scholar 

  16. Pujades, S., et al.: The virtual caliper: rapid creation of metrically accurate avatars from 3D measurements. IEEE Trans. Visual Comput. Graphics 25(5), 1887–1897 (2019). https://doi.org/10.1109/TVCG.2019.2898748

    Article  Google Scholar 

  17. Schleicher., R., et al.: BASH: biomechanical animated skinned human for visualization of kinematics and muscle activity. In: Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) - GRAPP, pp. 25–36. INSTICC, SciTePress (2021). https://doi.org/10.5220/0010210600250036

  18. Streuber, S., et al.: Body Talk: crowdshaping realistic 3D avatars with words. ACM Trans. Graph. (Proc. SIGGRAPH) 35(4), 54:1–54:14 (2016)

    Google Scholar 

  19. Wuhrer, S., Shu, C.: Estimating 3D human shapes from measurements. CoRR abs/1109.1175 (2011). http://arxiv.org/abs/1109.1175

  20. Zhang, C., Chen, T.: Efficient feature extraction for 2D/3D objects in mesh representation. In: Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), vol. 3, pp. 935–938 (2001). https://doi.org/10.1109/ICIP.2001.958278

Download references

Acknowledgements

This work was (partly) funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - SFB 1483 - Project-ID 442419336, EmpkinS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Zieger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zieger, D. et al. (2025). 3D Body Twin: Improving Human Gait Visualizations Using Personalized Avatars. In: Wachinger, C., Paniagua, B., Elhabian, S., Luijten, G., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2024. Lecture Notes in Computer Science, vol 15275. Springer, Cham. https://doi.org/10.1007/978-3-031-75291-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75291-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75290-2

  • Online ISBN: 978-3-031-75291-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics