Abstract
Understanding body part geometry is crucial for precise medical diagnostics. Curves effectively describe anatomical structures and are widely used in medical imaging applications related to cardiovascular, respiratory, and skeletal diseases. Traditional curve detection methods are often task-specific, relying heavily on domain-specific features, limiting their broader applicability. This paper introduces an novel approach for detecting non-branching curves, which does not require prior knowledge of the object’s orientation, shape, or position. Our method uses neural networks to predict (1) an attraction field, which offers subpixel accuracy, and (2) a closeness map, which limits the region of interest and essentially eliminates outliers far from the desired curve. We tested our curve detector on several clinically relevant tasks with diverse morphologies and achieved impressive subpixel-level accuracy results that surpass existing methods, highlighting its versatility and robustness. Additionally, to support further advancements in this field, we provide our private annotations of aortic centerlines and masks, which can serve as a benchmark for future research. The dataset can be found at https://github.com/neuro-ml/curve-detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Strong baseline is a baseline that significantly exploits the unique features of a particular task, like the spine’s vertical orientation.
References
Armato, S.G., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)
Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)
Bulat, A., Tzimiropoulos, G.: Human pose estimation via convolutional part heatmap regression. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part VII. LNCS, vol. 9911, pp. 717–732. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_44
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(6), 679–698 (1986). https://doi.org/10.1109/TPAMI.1986.4767851
Grélard, F., Baldacci, F., Vialard, A., Domenger, J.P.: New methods for the geometrical analysis of tubular organs. Med. Image Anal. 42, 89–101 (2017)
Guo, Z., et al.: Deepcenterline: a multi-task fully convolutional network for centerline extraction. IPMI 2019(11492), 441–453 (2019)
Hadjiiski, L., et al.: Ureter tracking and segmentation in CT urography (CTU) using compass. Med. Phys. 41(12), 121906 (2014)
Hahn, L.D., et al.: CT-based true-and false-lumen segmentation in type B aortic dissection using machine learning. Radiol. Cardiothoracic Imaging 2(3), e190179 (2020)
He, J., et al.: Learning hybrid representations for automatic 3D vessel centerline extraction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 24–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_3
Ji, Y., et al.: AMOS: a large-scale abdominal multi-organ benchmark for versatile medical image segmentation. arXiv preprint arXiv:2206.08023 (2022)
Le, H., Borji, A.: What are the receptive, effective receptive, and projective fields of neurons in convolutional neural networks? arXiv preprint arXiv:1705.07049 (2017)
Löffler, M., et al.: A vertebral segmentation dataset with fracture grading. Radiol. Artif. Intell. 2(4), e190138 (2020)
Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV, pp. 565–571 (2016)
Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3523–3542 (2021)
Nan, X., Bai, S., Wang, F., Xia, G.S., Wu, T., Zhang, L.: Learning attraction field representation for robust line segment detection. In: CVPR (2019)
Neubeck, A., Gool, L.V.: Efficient non-maximum suppression. In: ICPR 2006, vol. 3, pp. 850–855 (2006). https://doi.org/10.1109/ICPR.2006.479
Newell, A., Yang, K., Deng, J.: Stacked Hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29
Nikolov, S., et al.: Clinically applicable segmentation of head and neck anatomy for radiotherapy: deep learning algorithm development and validation study. J. Med. Internet Res. 23, e26151 (2021). https://doi.org/10.2196/26151
Pautrat, R., Barath, D., Larsson, V., Oswald, M.R., Pollefeys, M.: DeepLSD: line segment detection and refinement with deep image gradients. arXiv preprint arXiv:2212.07766 (2022)
Poma, X.S., Riba, E., Sappa, A.: Dense extreme inception network: towards a robust cnn model for edge detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1923–1932 (2020)
Rougé, P., Passat, N., Merveille, O.: Cascaded multitask U-Net using topological loss for vessel segmentation and centerline extraction. arXiv preprint arXiv:2307.11603 (2023)
Setio, A., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med. Image Anal. 42, 1–13 (2017)
Shit, S., et al.: clDice-a novel topology-preserving loss function for tubular structure segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16560–16569 (2021). https://doi.org/10.1109/CVPR46437.2021.01629
Spencer, T., Olson, J.A., McHardy, K.C., Sharp, P.F., Forrester, J.V.: An image-processing strategy for the segmentation and quantification of microaneurysms in fluorescein angiograms of the ocular fundus. Comput. Biomed. Res. 29(4), 284–302 (1996)
Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000). https://doi.org/10.1126/science.290.5500.2319
Valente, M., Stanciulescu, B.: Real-time method for general road segmentation. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 443–447 (2017). https://doi.org/10.1109/IVS.2017.7995758
Von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 722–732 (2008)
Wang, F., Zheng, K., Lu, L., Xiao, J., Wu, M., Miao, S.: Automatic vertebra localization and identification in CT by spine rectification and anatomically-constrained optimization. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5280–5288 (2021)
Winzeck, S., et al.: ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI. Front. Neurol. 9, 679 (2018)
Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015)
Xu, Y., Xu, W., Cheung, D., Tu, Z.: Line segment detection using transformers without edges. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4257–4266 (2021)
Xue, N., et al.: Holistically-attracted wireframe parsing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2788–2797 (2020)
Zakharov, A., et al.: Interpretable vertebral fracture quantification via anchor-free landmarks localization. Med. Image Anal. 83, 102646 (2023)
Zhang, H., Kheyfets, V.O., Finol, E.A.: Robust infrarenal aortic aneurysm lumen centerline detection for rupture status classification. Med. Eng. Phys. 35(9), 1358–1367 (2013)
Zhang, J., Xu, Y., Ni, B., Duan, Z.: Geometric constrained joint lane segmentation and lane boundary detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 502–518. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_30
Zhang, P., Wang, F., Zheng, Y.: Deep reinforcement learning for vessel centerline tracing in multi-modality 3D volumes. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 755–763. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_86
Zhao, J., Feng, Q.: Automatic aortic dissection centerline extraction via morphology-guided CRN tracker. IEEE J. Biomed. Health Inform. 25(9), 3473–3485 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yaushev, F. et al. (2025). Robust Curve Detection in Volumetric Medical Imaging via Attraction Field. In: Wachinger, C., Paniagua, B., Elhabian, S., Luijten, G., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2024. Lecture Notes in Computer Science, vol 15275. Springer, Cham. https://doi.org/10.1007/978-3-031-75291-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-75291-9_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75290-2
Online ISBN: 978-3-031-75291-9
eBook Packages: Computer ScienceComputer Science (R0)