Skip to main content

Robust Curve Detection in Volumetric Medical Imaging via Attraction Field

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2024)

Abstract

Understanding body part geometry is crucial for precise medical diagnostics. Curves effectively describe anatomical structures and are widely used in medical imaging applications related to cardiovascular, respiratory, and skeletal diseases. Traditional curve detection methods are often task-specific, relying heavily on domain-specific features, limiting their broader applicability. This paper introduces an novel approach for detecting non-branching curves, which does not require prior knowledge of the object’s orientation, shape, or position. Our method uses neural networks to predict (1) an attraction field, which offers subpixel accuracy, and (2) a closeness map, which limits the region of interest and essentially eliminates outliers far from the desired curve. We tested our curve detector on several clinically relevant tasks with diverse morphologies and achieved impressive subpixel-level accuracy results that surpass existing methods, highlighting its versatility and robustness. Additionally, to support further advancements in this field, we provide our private annotations of aortic centerlines and masks, which can serve as a benchmark for future research. The dataset can be found at https://github.com/neuro-ml/curve-detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/neuro-ml/curve-detection.

  2. 2.

    Strong baseline is a baseline that significantly exploits the unique features of a particular task, like the spine’s vertical orientation.

References

  1. Armato, S.G., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  2. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

  3. Bulat, A., Tzimiropoulos, G.: Human pose estimation via convolutional part heatmap regression. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part VII. LNCS, vol. 9911, pp. 717–732. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_44

    Chapter  Google Scholar 

  4. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(6), 679–698 (1986). https://doi.org/10.1109/TPAMI.1986.4767851

  5. Grélard, F., Baldacci, F., Vialard, A., Domenger, J.P.: New methods for the geometrical analysis of tubular organs. Med. Image Anal. 42, 89–101 (2017)

    Article  Google Scholar 

  6. Guo, Z., et al.: Deepcenterline: a multi-task fully convolutional network for centerline extraction. IPMI 2019(11492), 441–453 (2019)

    Google Scholar 

  7. Hadjiiski, L., et al.: Ureter tracking and segmentation in CT urography (CTU) using compass. Med. Phys. 41(12), 121906 (2014)

    Article  Google Scholar 

  8. Hahn, L.D., et al.: CT-based true-and false-lumen segmentation in type B aortic dissection using machine learning. Radiol. Cardiothoracic Imaging 2(3), e190179 (2020)

    Google Scholar 

  9. He, J., et al.: Learning hybrid representations for automatic 3D vessel centerline extraction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 24–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_3

    Chapter  Google Scholar 

  10. Ji, Y., et al.: AMOS: a large-scale abdominal multi-organ benchmark for versatile medical image segmentation. arXiv preprint arXiv:2206.08023 (2022)

  11. Le, H., Borji, A.: What are the receptive, effective receptive, and projective fields of neurons in convolutional neural networks? arXiv preprint arXiv:1705.07049 (2017)

  12. Löffler, M., et al.: A vertebral segmentation dataset with fracture grading. Radiol. Artif. Intell. 2(4), e190138 (2020)

    Google Scholar 

  13. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV, pp. 565–571 (2016)

    Google Scholar 

  14. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3523–3542 (2021)

    Google Scholar 

  15. Nan, X., Bai, S., Wang, F., Xia, G.S., Wu, T., Zhang, L.: Learning attraction field representation for robust line segment detection. In: CVPR (2019)

    Google Scholar 

  16. Neubeck, A., Gool, L.V.: Efficient non-maximum suppression. In: ICPR 2006, vol. 3, pp. 850–855 (2006). https://doi.org/10.1109/ICPR.2006.479

  17. Newell, A., Yang, K., Deng, J.: Stacked Hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  18. Nikolov, S., et al.: Clinically applicable segmentation of head and neck anatomy for radiotherapy: deep learning algorithm development and validation study. J. Med. Internet Res. 23, e26151 (2021). https://doi.org/10.2196/26151

  19. Pautrat, R., Barath, D., Larsson, V., Oswald, M.R., Pollefeys, M.: DeepLSD: line segment detection and refinement with deep image gradients. arXiv preprint arXiv:2212.07766 (2022)

  20. Poma, X.S., Riba, E., Sappa, A.: Dense extreme inception network: towards a robust cnn model for edge detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1923–1932 (2020)

    Google Scholar 

  21. Rougé, P., Passat, N., Merveille, O.: Cascaded multitask U-Net using topological loss for vessel segmentation and centerline extraction. arXiv preprint arXiv:2307.11603 (2023)

  22. Setio, A., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med. Image Anal. 42, 1–13 (2017)

    Article  Google Scholar 

  23. Shit, S., et al.: clDice-a novel topology-preserving loss function for tubular structure segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16560–16569 (2021). https://doi.org/10.1109/CVPR46437.2021.01629

  24. Spencer, T., Olson, J.A., McHardy, K.C., Sharp, P.F., Forrester, J.V.: An image-processing strategy for the segmentation and quantification of microaneurysms in fluorescein angiograms of the ocular fundus. Comput. Biomed. Res. 29(4), 284–302 (1996)

    Article  Google Scholar 

  25. Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000). https://doi.org/10.1126/science.290.5500.2319

    Article  Google Scholar 

  26. Valente, M., Stanciulescu, B.: Real-time method for general road segmentation. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 443–447 (2017). https://doi.org/10.1109/IVS.2017.7995758

  27. Von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 722–732 (2008)

    Article  Google Scholar 

  28. Wang, F., Zheng, K., Lu, L., Xiao, J., Wu, M., Miao, S.: Automatic vertebra localization and identification in CT by spine rectification and anatomically-constrained optimization. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5280–5288 (2021)

    Google Scholar 

  29. Winzeck, S., et al.: ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI. Front. Neurol. 9, 679 (2018)

    Article  Google Scholar 

  30. Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015)

    Google Scholar 

  31. Xu, Y., Xu, W., Cheung, D., Tu, Z.: Line segment detection using transformers without edges. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4257–4266 (2021)

    Google Scholar 

  32. Xue, N., et al.: Holistically-attracted wireframe parsing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2788–2797 (2020)

    Google Scholar 

  33. Zakharov, A., et al.: Interpretable vertebral fracture quantification via anchor-free landmarks localization. Med. Image Anal. 83, 102646 (2023)

    Article  Google Scholar 

  34. Zhang, H., Kheyfets, V.O., Finol, E.A.: Robust infrarenal aortic aneurysm lumen centerline detection for rupture status classification. Med. Eng. Phys. 35(9), 1358–1367 (2013)

    Article  Google Scholar 

  35. Zhang, J., Xu, Y., Ni, B., Duan, Z.: Geometric constrained joint lane segmentation and lane boundary detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 502–518. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_30

    Chapter  Google Scholar 

  36. Zhang, P., Wang, F., Zheng, Y.: Deep reinforcement learning for vessel centerline tracing in multi-modality 3D volumes. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 755–763. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_86

    Chapter  Google Scholar 

  37. Zhao, J., Feng, Q.: Automatic aortic dissection centerline extraction via morphology-guided CRN tracker. IEEE J. Biomed. Health Inform. 25(9), 3473–3485 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farukh Yaushev .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1001 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yaushev, F. et al. (2025). Robust Curve Detection in Volumetric Medical Imaging via Attraction Field. In: Wachinger, C., Paniagua, B., Elhabian, S., Luijten, G., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2024. Lecture Notes in Computer Science, vol 15275. Springer, Cham. https://doi.org/10.1007/978-3-031-75291-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75291-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75290-2

  • Online ISBN: 978-3-031-75291-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics