Skip to main content

A Critical Comparison Between Template-Based and Architecture-Reused Deep Learning Methods for Generic 3D Landmarking of Anatomical Structures

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2024)

Abstract

Shape alterations in body organs are common pathological hallmarks of multiple disorders, making quantitative shape analysis key for obtaining diagnostic and prognostic biomarkers. In this context, Geometric Morphometrics (GM) is a powerful approach to capture subtle yet significant dysmorphologies. Since GM relies on registering landmarks on 3D anatomical structures, developing generic, automatic and accurate 3D landmarking methods is key for building high-throughput morphometric tools. This study compares state-of-the-art deep learning and template-based 3D landmarking methods using MRI datasets of faces, upper airways, and hippocampi. We evaluated these methods in terms of landmarking error and morphometric variables relative to manual annotations. Our results show that architecture-reused deep learning methods are more accurate and faster in inference than template-based techniques, particularly for anatomical structures with high shape variability, even with fewer training examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis: With Applications in R, vol. 995. Wiley, Chichester (2016)

    Book  Google Scholar 

  2. Hallgrímsson, B., et al.: Automated syndrome diagnosis by three-dimensional facial imaging. Genet. Med. 22(1010), 1682–1693 (2020). https://doi.org/10.1038/s41436-020-0845-y

    Article  Google Scholar 

  3. El-Baz, A., Nitzken, M., Elnakib, A., et al.: 3D shape analysis for early diagnosis of malignant lung nodules. Med. Image Comput. Comput. Assist. Interv. 14(Pt 3), 175–182 (2011)

    Google Scholar 

  4. Elnakib, A., Casanova, M.F., Gimel’farb, G., El-Baz, A.: Autism diagnostics by 3D shape analysis of the corpus callosum. In: Suzuki, K. (ed.) Machine Learning in Computer-Aided Diagnosis: Medical Imaging Intelligence and Analysis, pp. 315–335. IGI Global (2012)

    Google Scholar 

  5. Monna, F., Ben Messaoud, R., Navarro, N., et al.: Machine learning and geometric morphometrics to predict obstructive sleep apnea from 3D craniofacial scans. Sleep Med. 95, 76–83 (2022)

    Article  Google Scholar 

  6. Mitteroecker, P., Schaefer, K.: Thirty years of geometric morphometrics: achievements, challenges, and the ongoing quest for biological meaningfulness. Am. J. Biol. Anthropol. 178, 181–210 (2022)

    Article  Google Scholar 

  7. Huanca Ghislanzoni, L., Lione, R., Cozza, P., Franchi, L.: Measuring 3D shape in orthodontics through geometric morphometrics. Prog. Orthod. 18(1), 38 (2017)

    Article  Google Scholar 

  8. Lois Zlolniski, S., Torres-Tamayo, N., García-Martínez, D., et al.: 3D geometric morphometric analysis of variation in the human lumbar spine. Am. J. Phys. Anthropol. 170(3), 361–372 (2019)

    Article  Google Scholar 

  9. Laganà, G., Venza, N., Paoloni, V., Bertoldo, F., Ruvolo, G., Cozza, P.: A 3D geometric morphometric analysis of the palatal morphology in Marfan’s syndrome: a preliminary study. J. Clin. Diagn. Res. 12(1), ZC14–ZC17 (2018)

    Google Scholar 

  10. Zhong, Y., Chen, Z., Li, B., Ma, H., Yang, B.: Correlation analysis of airway-facial phenotype in Crouzon syndrome by geometric morphometrics: a promising method for non-radiation airway evaluation. Orthod. Craniofac. Res. 27, 504–513 (2024)

    Article  Google Scholar 

  11. Starbuck, J.M., et al.: Green tea extracts containing epigallocatechin-3-gallate modulate facial development in Down syndrome. Sci. Rep. 11(1), 4715 (2021)

    Article  Google Scholar 

  12. Percival, C.J., Devine, J., Darwin, B.C., et al.: The effect of automated landmark identification on morphometric analyses. J. Anat. 234(6), 917–935 (2019). https://doi.org/10.1111/joa.13059. Published correction appears in J Anat. 2019 235(5):1018

  13. Li, M., et al.: Rapid automated landmarking for morphometric analysis of three-dimensional facial scans. J. Anat. 230(4), 607–618 (2017)

    Article  MathSciNet  Google Scholar 

  14. Liang, S., Wu, J., Weinberg, S.M., Shapiro, L.G.: Improved detection of landmarks on 3D human face data. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6482–6485 (2013)

    Google Scholar 

  15. Papazov, C., Marks, T., Jones, M.: Real-time head pose and facial landmark estimation from depth images using triangular surface patch features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4722–4730 (2015)

    Google Scholar 

  16. Abu, A., Ngo, C.G., Abu-Hassan, N., Othman, S.A.: Automated craniofacial landmarks detection on 3D image using geometry characteristics information. BMC Bioinform. 19(Suppl 13), 548 (2019)

    Article  Google Scholar 

  17. de Jong, M.A., Hysi, P., Spector, T., et al.: Ensemble landmarking of 3D facial surface scans. Sci. Rep. 8, 12 (2018)

    Article  Google Scholar 

  18. Paulsen, R.R., Juhl, K.A., Haspang, T.M., Hansen, T., Ganz, M., Einarsson, G.: Multi-view consensus CNN for 3D facial landmark placement. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11361, pp. 706–719. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20887-5_44

    Chapter  Google Scholar 

  19. Zhang, Y., et al.: An automated method of 3D facial soft tissue landmark prediction based on object detection and deep learning. Diagnostics 13(11), 1853 (2023)

    Article  Google Scholar 

  20. He, Z., et al.: FST-NET: facial soft tissue landmark localization on 3DMD scans using feature fusion and local coordinate regression. In: Proceedings of the 2024 IEEE International Symposium on Biomedical Imaging (2024)

    Google Scholar 

  21. Berends, B., Bielevelt, F., Schreurs, R., Vinayahalingam, S., Maal, T., de Jong, G.: Fully automated landmarking and facial segmentation on 3D photographs. Sci. Rep. 14(1), 6463 (2024)

    Article  Google Scholar 

  22. Devine, J., Aponte, J.D., Katz, D.C., et al.: A registration and deep learning approach to automated landmark detection for geometric morphometrics. Evol. Biol. 47, 246–259 (2020). https://doi.org/10.1007/s11692-020-09508-8

    Article  Google Scholar 

  23. Porto, A., Rolfe, S., Maga, A.M.: ALPACA: a fast and accurate computer vision approach for automated landmarking of three-dimensional biological structures. Methods Ecol. Evol. 12(11), 2129–2144 (2021)

    Article  Google Scholar 

  24. Rohlf, F.J., Slice, D.: Extensions of the procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39, 40–59 (1990)

    Article  Google Scholar 

  25. Zhang, C., Porto, A., Rolfe, S., Kocatulum, A., Maga, A.M.: Automated landmarking via multiple templates. PLoS ONE 17(12), e0278035 (2022)

    Article  Google Scholar 

  26. Wen, A., Zhu, Y., Xiao, N., et al.: Comparison study of extraction accuracy of 3D facial anatomical landmarks based on non-rigid registration of face template. Diagnostics (Basel) 13(6), 1086 (2023). Published 2023 Mar 13

    Google Scholar 

  27. Serafin, M., Baldini, B., Cabitza, F., et al.: Accuracy of automated 3D cephalometric landmarks by deep learning algorithms: systematic review and meta-analysis. Radiol. Med. 128(5), 544–555 (2023)

    Article  Google Scholar 

  28. Patenaude, B., Smith, S.M., Kennedy, D.N., Jenkinson, M.: A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56(3), 907–922 (2011)

    Article  Google Scholar 

  29. Stull, K.E., Tise, M.L., Ali, Z., Fowler, D.R.: Accuracy and reliability of measurements obtained from computed tomography 3D volume rendered images. Forensic Sci. Int. 238, 133–140 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The research in this paper was supported by the Joan Oró grant (2024 FI-3 00160) from the Recerca i Universitats Departament (DRU) of the Generalitat de Catalunya with grant 2023 FI-2 00160 and the European Social Fund, by Agencia Española de Investigación (PID2020-113609RB-C21/AEI/10.13039/501100011033), by Instituto de Salud Carlos III (ISCIII) through the contracts FI21/00093 and CP20/00072 (co-funded by European Regional Development Fund (ERDF)/European Social Fund “Investing in your future”) and by Fondation Jerome Lejeune with grant 2020b cycle-Project No.2001. The authors would also like to thank the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) of the Generalitat de Catalunya (2021 SGR01396, 2021 SGR00706, 2021 SGR1475).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Heredia-Lidón .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heredia-Lidón, Á. et al. (2025). A Critical Comparison Between Template-Based and Architecture-Reused Deep Learning Methods for Generic 3D Landmarking of Anatomical Structures. In: Wachinger, C., Paniagua, B., Elhabian, S., Luijten, G., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2024. Lecture Notes in Computer Science, vol 15275. Springer, Cham. https://doi.org/10.1007/978-3-031-75291-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75291-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75290-2

  • Online ISBN: 978-3-031-75291-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics