Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15221))

Included in the following conference series:

  • 185 Accesses

Abstract

In industrial-sized cyber-physical systems, ensuring fulfillment of requirements gets increasingly more costly as the number of components increases. To make the task feasible, compositional verification has been suggested as a scalable solution. Such techniques allow verification by divide-and-conquer, often using assume-guarantee contracts. Although previous research has focused mostly on the non-probabilistic setting, in the real world, probabilities often arise due to random hardware failures, stochastic communication delays, sensor ghost objects, machine learning components, rounding errors caused by finite-precision arithmetic, human behavior, and probabilistic algorithms. Therefore, for contract theories to be practically relevant to cyber-physical systems, there is a need to support probabilistic reasoning, for instance regarding safety and reliability. To this end, we propose a completely trace-based probabilistic contract theory, supporting general probability measures, continuous time, and continuous state spaces. To verify decompositions of such contracts, we also present a deductive system, which is illustrated on an industrially inspired automatic emergency braking example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that there are alternative ways to define measurable functions when f is a bounded function defined on a set of finite measure, which is true for probability measures. In this case, f is measurable if and only if f is Lebesgue integrable [32], or, alternatively, approximable to arbitrary precision using simple functions [14]. To put this into perspective, note that the set of all Lebesgue measurable functions contains, among others, all functions that are Riemann integrable.

References

  1. Bauer, S., Mayer, P., Legay, A.: Mio workbench: a tool for compositional design with modal input/output interfaces. In: Proceedings of the 9th International Symposium on Automated Technology for Verification and Analysis (ATVA), pp. 418–421 (2011)

    Google Scholar 

  2. Benveniste, A., Caillaud, B., Nickovic, D., Raclet, J.B., Passerone, R.: Contracts for System Design. now Publishers Inc. (2018)

    Google Scholar 

  3. Benveniste, A., Raclet, J.B.: Mixed nondeterministic-probabilistic automata: blending graphical probabilistic models with nondeterminism. Discr. Event Dyn. Syst. 33(4), 455–505 (2023)

    Article  Google Scholar 

  4. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski, A.: Compositional design methodology with constraint Markov chains. In: 2010 Seventh International Conference on the Quantitative Evaluation of Systems, pp. 123–132. IEEE (2010)

    Google Scholar 

  5. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: a tool for checking the refinement of temporal contracts. In: 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 702–705. IEEE (2013)

    Google Scholar 

  6. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez, C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54792-8_15

    Chapter  Google Scholar 

  7. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33826-7_16

    Chapter  Google Scholar 

  8. Roever, W.-P.: The need for compositional proof systems: a survey. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 1–22. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49213-5_1

    Chapter  Google Scholar 

  9. Delahaye, B., Caillaud, B., Legay, A.: Probabilistic contracts: a compositional reasoning methodology for the design of systems with stochastic and/or non-deterministic aspects. Formal Meth. Syst. Des. 38(1), 1–32 (2011)

    Article  Google Scholar 

  10. Delahaye, B., Katoen, J.-P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F., Wąsowski, A.: Abstract probabilistic automata. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 324–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_23

    Chapter  Google Scholar 

  11. Der Kiureghian, A., Ditlevsen, O.: Aleatory or epistemic? Does it matter? Struct. Saf. 31(2), 105–112 (2009)

    Article  Google Scholar 

  12. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems Modeling Language, 3rd edn. The MK/OMG Press, Morgan Kaufmann (2014)

    Google Scholar 

  13. Gössler, G., Xu, D.N., Girault, A.: Probabilistic contracts for component-based design. Formal Meth. Syst. Des. 41(2), 211–231 (2012)

    Article  Google Scholar 

  14. Gut, A.: Probability: A Graduate Course, vol. 200. Springer, New York (2006). https://doi.org/10.1007/978-1-4614-4708-5

  15. Hampus, A., Nyberg, M.: Verifying refinement of probabilistic contracts using timed automata. In: David, C., Sun, M. (eds.) Proceedings of the 17th International Symposium on Theoretical Aspects of Software Engineering, TASE 2023, Bristol, UK, 4–6 July 2023, pp. 95–113. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35257-7_6

  16. Hampus, A., Nyberg, M. Formally verifying decompositions of stochastic specifications. Int. J. Softw. Tools Technol. Transfer 26, 207–228 (2024). https://doi.org/10.1007/s10009-024-00742-5

  17. Hampus, A., Nyberg, M.: A theory of probabilistic contracts (with proofs). Technical report, KTH Royal Institute of Technology (2024)

    Google Scholar 

  18. Incer, I., et al.: Pacti: scaling assume-guarantee reasoning for system analysis and design. arXiv preprint arXiv:2303.17751 (2023)

  19. Incer, I., Benveniste, A., Sangiovanni-Vincentelli, A., Seshia, S.A.: Hypercontracts. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) Proceedings of the 14th International Symposium on NASA Formal Methods, NFM 2022, Pasadena, CA, USA, 24–27 May 2022, pp. 674–692. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06773-0_36

  20. ISO 21434: “Road vehicles - Cybersecurity engineering” (2021)

    Google Scholar 

  21. ISO 26262: “Road vehicles - Functional safety” (2018)

    Google Scholar 

  22. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: Proceedings 1991 Sixth Annual IEEE Symposium on Logic in Computer Science, pp. 266–267. IEEE Computer Society (1991)

    Google Scholar 

  23. Jonsson, B., Yi, W.: Testing preorders for probabilistic processes can be characterized by simulations. Theoret. Comput. Sci. 282(1), 33–51 (2002)

    Article  MathSciNet  Google Scholar 

  24. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition systems for system design and analysis. Formal Aspects Comput. 19(1), 93–109 (2007)

    Article  Google Scholar 

  25. Lapidoth, A.: A Foundation in Digital Communication. Cambridge University Press (2017)

    Google Scholar 

  26. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  27. Nuzzo, P., Li, J., Sangiovanni-Vincentelli, A.L., Xi, Y., Li, D.: Stochastic assume-guarantee contracts for cyber-physical system design. ACM Trans. Embed. Comput. Syst. (TECS) 18(1), 1–26 (2019)

    Article  Google Scholar 

  28. Nyberg, M., Westman, J., Gurov, D.: Formally proving compositionality in industrial systems with informal specifications. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12478, pp. 348–365. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61467-6_22

    Chapter  Google Scholar 

  29. Official Journal of the European Union: (EU) 2022/1426, L:2022:221 (August 2022). https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2022:221:FULL

  30. Paul, W., Baschnagel, J.: Stochastic processes. From Physics to finance (1999)

    Google Scholar 

  31. Resnick, S.: A probability path (2019)

    Google Scholar 

  32. Royden, H., Fitzpatrick, P.M.: Real analysis. China Machine Press (2010)

    Google Scholar 

  33. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-540-48654-1_35

    Chapter  Google Scholar 

  34. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7_6

    Chapter  Google Scholar 

Download references

Acknowledgement

Supported by Vinnova FFI, Sweden, through the SafeDim project. Some of the concepts presented here were discussed at the Lorentz center workshop on Contract Languages, 4–8 March 2024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Hampus .

Editor information

Editors and Affiliations

Appendices

Proofs of Correctness for the Inference Rules

Proposition 2

(\(\hbox {ai}_1\)). Let \(\mathcal {M} \in \mathbb {M}_{\mathbb {C},\mathbb {S}}\) be any model conforming to the metatheory. If \(\mathcal {M} \vDash \forall q_1 \forall q_2 \ . \ (q_1 : S) \wedge (q_1 \times q_2 : \copyright ) \rightarrow q_1 \times q_2 : S\), then also \(\mathcal {M} \vDash \textsf{Assertional}(S)\). \(\square \)

Proposition 3

(am). Let \(\mathcal {M} \in \mathbb {M}_{\mathbb {C},\mathbb {S}}\) be any model conforming to the metatheory. If \(\mathcal {M} \vDash c_1 : S\), \(\mathcal {M} \vDash \textsf{Assertional}(S)\), and \(\mathcal {M} \vDash c_1 \times c_2 : \copyright \), then also \( \mathcal {M} \vDash c_1 \times c_2 : S \). \(\square \)

Proposition 4

(recp-i\(_1\)). Let \(\mathcal {M} \in \mathbb {M}_{\mathbb {C},\mathbb {S}}\) be any model conforming to the metatheory. If \( \mathcal {M} \vDash c : \textsf{in}_X \), then also \( \mathcal {M} \vDash \textsf{recp}_{X} \). \(\square \)

Proposition 5

(recp-i\(_2\)). Let \(\mathcal {M} \in \mathbb {M}_{\mathbb {C},\mathbb {S}}\) be any model conforming to the metatheory. If \( \mathcal {M} \vDash c : \textsf{out}_X \), then also \( \mathcal {M} \vDash \textsf{recp}_{X^c} \). \(\square \)

Proposition 6

(recp-i\(_3\)). Let \(\mathcal {M} \in \mathbb {M}_{\mathbb {C},\mathbb {S}}\) be any model conforming to the metatheory. If \( \mathcal {M} \vDash c : \textsf{recp}_{X_1} \) and \(\mathcal {M} \vDash c : \textsf{recp}_{X_2} \), then also \( \mathcal {M} \vDash \textsf{recp}_{X_1 \cup X_2} \). \(\square \)

Proposition 7

(recp-e). Let \(\mathcal {M} \in \mathbb {M}_{\mathbb {C},\mathbb {S}}\) be any model conforming to the metatheory. If \( \mathcal {M} \vDash c : \textsf{recp}_{X_1 \cup X_2} \), then also \( \mathcal {M} \vDash \textsf{recp}_{X_1} \). \(\square \)

Proposition 8

(recp-comps). Let \(\mathcal {M} \in \mathbb {M}_{\mathbb {C},\mathbb {S}}\) be any model conforming to the metatheory. If \( \mathcal {M} \vDash c_1 : \textsf{recp}_{X_1}, \dots , \mathcal {M} \vDash c_n : \textsf{recp}_{X_n} \), then also \( \mathcal {M} \vDash c_1 \times \dots \times c_n : \textsf{recp}_{X_1 \cap \dots \cap X_n} \). \(\square \)

Proposition 9

(\(\copyright \)i). Let \(\mathcal {M} \in \mathbb {M}_{\mathfrak {B},\mathbb {C},\mathbb {S}}\) be any model conforming to the probabilistic instantiation of the metatheory. If \( \mathcal {M} \vDash c_1 : \textsf{recp}_{X_1}, \dots , \mathcal {M} \vDash c_n : \textsf{recp}_{X_n} \), \( \forall i \ne j \ . \ X_i^c \cap X_j^c = \emptyset \), and \( \forall i \in \{1..n\} \ . \ (\mathcal {M} \vDash c_i : \textsf{in}_{X_i'}) \wedge X_i' \subseteq \bigcap _{j=i+1}^n X_j \), then also \( \mathcal {M} \vDash c_1 \times \dots \times c_n : \copyright \). \(\square \)

Proposition 10

(ai\(_2\)). Let \(\mathcal {M} \in \mathbb {M}_{\mathfrak {B},\mathbb {C},\mathbb {S}}\) be any model conforming to the probabilistic instantiation of the metatheory. Then \( \mathcal {M} \vDash \textsf{Assertional}\big (\left( f(\textbf{x}) \perp \!\!\!\perp g(\textbf{y})\right) \big ) \). \(\square \)

Proposition 11

(\(\perp \!\!\!\perp \)i). Let \(\mathcal {M} \in \mathbb {M}_{\mathfrak {B},\mathbb {C},\mathbb {S}}\) be any model conforming to the probabilistic instantiation of the metatheory. If \( \mathcal {M} \vDash c_1 : \textsf{in}_{\{y_{1}\}} \), \( \mathcal {M} \vDash c_1 : \left( f_1(\textbf{x}_1) \perp \!\!\!\perp y_1\right) \), \( \mathcal {M} \vDash c_2 : \textsf{in}_{\{y_{2}\}} \), \( \mathcal {M} \vDash c_2 : \left( f_2(\textbf{x}_2) \perp \!\!\!\perp y_2\right) \), and \( \mathcal {M} \vDash c_1 \times c_2 : \copyright \), then also \( \mathcal {M} \vDash c_1 \times c_2 : \left( f_1(\textbf{x}_1) \perp \!\!\!\perp f_2(\textbf{x}_2)\right) \). \(\square \)

Refinement Proof

Fig. 6.
figure 6

Proof of the sequent (16)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hampus, A., Nyberg, M. (2025). A Theory of Probabilistic Contracts. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Specification and Verification. ISoLA 2024. Lecture Notes in Computer Science, vol 15221. Springer, Cham. https://doi.org/10.1007/978-3-031-75380-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75380-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75379-4

  • Online ISBN: 978-3-031-75380-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics