Skip to main content

A New Approach for Approximating Directed Rooted Networks

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2024)

Abstract

We consider the k-outconnected directed Steiner tree problem (k-DST). Given a directed edge-weighted graph \(G=(V,E,w)\), where \(V = \{r\} \cup S \cup T\), and an integer k, the goal is to find a minimum cost subgraph of G in which there are k edge-disjoint rt-paths for every terminal \(t \in T\). The problem is known to be NP-Hard. Furthermore, the question on whether a polynomial time, subpolynomial approximation algorithm exists for k-DST was answered negatively by Grandoni et al. (2018), by proving an approximation hardness of \(\Omega (|T|/\log |T|)\) under NP\(\ne \)ZPP.

Inspired by modern day applications, we focus on developing efficient algorithms for k-DST in graphs where terminals have out-degree 0, and furthermore constitute the vast majority in the graph. We provide the first approximation algorithm for k-DST on such graphs, in which the approximation ratio depends (primarily) on the size of S. We present a randomized algorithm that finds a solution of weight at most \(O(k|S| \log |T|)\) times the optimal weight, and with high probability runs in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via iterative randomized rounding. J. ACM (JACM) 60(1), 1–33 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chan, C., Laekhanukit, B., Wei, H., Zhang, Y.: Polylogarithmic approximation algorithm for k-connected directed steiner tree on quasi-bipartite graphs. In: Byrka, J., Meka, R. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2020, August 17–19, 2020, Virtual Conference. LIPIcs, vol. 176, pp. 63:1–63:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2020.63

  3. Charikar, M., et al.: Approximation algorithms for directed steiner problems. J. Algorithms 33(1), 73–91 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheriyan, J., Laekhanukit, B., Naves, G., Vetta, A.: Approximating rooted steiner networks. ACM Trans. Algorithms 11(2), 8:1–8:22 (2014).https://doi.org/10.1145/2650183

  5. Cohen, S., Kamma, L., Niklanovits, A.: A new approach for approximating directed rooted networks. arXiv:2407.07543 (2024)

  6. Dreyfus, S.E., Wagner, R.A.: The steiner problem in graphs. Networks 1(3), 195–207 (1971). https://doi.org/10.1002/NET.3230010302

  7. Edmonds, J.: Optimum branchings. J. Res. Natl. Bur. Stand. 71B, 233–240 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frank, A.: Increasing the rooted-connectivity of a digraph by one. Math. Program. 84(3), 565–576 (1999). https://doi.org/10.1007/s101070050040

    Article  MathSciNet  MATH  Google Scholar 

  9. Frank, A.: Rooted k-connections in digraphs. Discret. Appl. Math. 157(6), 1242–1254 (2009). https://doi.org/10.1016/J.DAM.2008.03.040

  10. Frank, A., Tardos, É.: Generalized polymatroids and submodular flows. Math. Program. 42(1-3), 489–563 (1988). https://doi.org/10.1007/BF01589418

  11. Frank, A.: Kernel systems of directed graphs. Acta Sci. Math 41(1), 63–76 (1979)

    MathSciNet  MATH  Google Scholar 

  12. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for the group steiner tree problem. J. Algorithms 37(1), 66–84 (2000). https://doi.org/10.1006/JAGM.2000.1096

  13. Goemans, M.X., Goldberg, A.V., Plotkin, S.A., Shmoys, D.B., Tardos, É., Williamson, D.P.: Improved approximation algorithms for network design problems. In: Sleator, D.D. (ed.) Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. 23–25 January 1994, Arlington, Virginia, USA, pp. 223–232. ACM/SIAM (1994). http://dl.acm.org/citation.cfm?id=314464.314497

  14. Grandoni, F., Laekhanukit, B.: Surviving in directed graphs: a quasi-polynomial-time polylogarithmic approximation for two-connected directed steiner tree. In: Hatami, H., McKenzie, P., King, V. (eds.) Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19–23, 2017, pp. 420–428. ACM (2017). https://doi.org/10.1145/3055399.3055445

  15. Gupta, A., Könemann, J.: Approximation algorithms for network design: a survey. Surv. Oper. Res. Manage. Sci. 16(1), 3–20 (2011)

    MATH  Google Scholar 

  16. Hwang, F.K., Richards, D.S.: Steiner tree problems. Networks 22(1), 55–89 (1992). https://doi.org/10.1002/NET.3230220105

  17. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Proceedings of a symposium on the Complexity of Computer Computations, held March 20–22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, pp. 85–103. The IBM Research Symposia Series, Plenum Press, New York (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

  18. Karp, R.M., Moreno-Centeno, E.: The implicit hitting set approach to solve combinatorial optimization problems with an application to multigenome alignment. Oper. Res. 61(2), 453–468 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kerivin, H., Mahjoub, A.R.: Design of survivable networks: a survey. Networks 46(1), 1–21 (2005). https://doi.org/10.1002/NET.20072

  20. Khuller, S., Vishkin, U.: Biconnectivity approximations and graph carvings. J. ACM 41(2), 214–235 (1994). https://doi.org/10.1145/174652.174654

  21. Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted Steiner trees. J. Algorithms 19(1), 104–115 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kortsarz, G., Nutov, Z.: Approximating minimum-cost connectivity problems. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics. Chapman and Hall/CRC (2007). https://doi.org/10.1201/9781420010749.CH58

  23. Laekhanukit, B.: Parameters of two-prover-one-round game and the hardness of connectivity problems. In: Chekuri, C. (ed.) Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5–7, 2014, pp. 1626–1643. SIAM (2014). https://doi.org/10.1137/1.9781611973402.118

  24. Laekhanukit, B.: Approximating directed steiner problems via tree embedding. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11–15, 2016, Rome, Italy. LIPIcs, vol. 55, pp. 74:1–74:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/LIPICS.ICALP.2016.74

  25. Liao, C., Chen, Q., Laekhanukit, B., Zhang, Y.: Almost tight approximation hardness for single-source directed k-edge-connectivity. In: Bojanczyk, M., Merelli, E., Woodruff, D.P. (eds.) 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4–8, 2022, Paris, France. LIPIcs, vol. 229, pp. 89:1–89:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPICS.ICALP.2022.89

  26. Nelson, J.: A note on set cover inapproximability independent of universe size. Electron. Colloquium Comput. Complex. (ECCC) 14(105) (2007)

    Google Scholar 

  27. Nutov, Z.: A note on rooted survivable networks. Inf. Process. Lett. 109(19), 1114–1119 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oliveira, C.A.S., Pardalos, P.M.: A survey of combinatorial optimization problems in multicast routing. Comput. Oper. Res. 32, 1953–1981 (2005). https://doi.org/10.1016/J.COR.2003.12.007

  29. Rothvoß, T.: Directed steiner tree and the lasserre hierarchy. CoRR arXiv:1111.5473 (2011)

  30. Voß, S.: Steiner tree problems in telecommunications. In: Resende, M.G.C., Pardalos, P.M. (eds.) Handbook of Optimization in Telecommunications, pp. 459–492. Springer (2006). https://doi.org/10.1007/978-0-387-30165-5_18

  31. Zelikovsky, A.: A series of approximation algorithms for the acyclic directed steiner tree problem. Algorithmica 18(1), 99–110 (1997). https://doi.org/10.1007/BF02523690

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lior Kamma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cohen, S., Kamma, L., Niklanovits, A. (2025). A New Approach for Approximating Directed Rooted Networks. In: Kráľ, D., Milanič, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2024. Lecture Notes in Computer Science, vol 14760. Springer, Cham. https://doi.org/10.1007/978-3-031-75409-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75409-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75408-1

  • Online ISBN: 978-3-031-75409-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics