Abstract
An \((\alpha ,\beta )\)-spanner of a weighted graph \(G=(V,E)\), is a subgraph H such that for every \(u,v\in V\), \(d_G(u,v) \le d_H(u,v)\le \alpha \cdot d_G(u,v)+\beta \). The main parameters of interest for spanners are their size (number of edges) and their lightness (the ratio between the total weight of H to the weight of a minimum spanning tree).
In this paper we focus on near-additive spanners, where \(\alpha =1+\varepsilon \) for arbitrarily small \(\varepsilon >0\). We show the first construction of light spanners in this setting. Specifically, for any integer parameter \(k\ge 1\), we obtain an \((1+\varepsilon ,O(k/\varepsilon )^k\cdot W(\cdot ,\cdot ))\)-spanner with lightness \(\widetilde{O}(n^{1/k})\) (where \(W(\cdot ,\cdot )\) indicates for every pair \(u, v \in V\) the heaviest edge in some shortest path between u, v). In addition, we can also bound the number of edges in our spanner by \(O(kn^{1+3/k})\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
The notation \(O_{\varepsilon }(\cdot )\) hides \((\frac{1}{\varepsilon })^{O(1)}\) factors.
- 2.
The notation \(\Omega _{k}(\cdot )\) hides \(k^{O(1)}\) factors.
- 3.
The notation \(\widetilde{O}(f(n))\) hides polylogarithmic factors in n.
- 4.
A prioritized spanner receives an arbitrary ranking of the points, and should obtain better stretch for high ranking points.
- 5.
A reliable spanner is susceptible to massive vertex failures \(B\subseteq V\), and still provide meaningful guarantees for all vertex pairs in \(V\setminus B^+\), where \(B^+\) is only slightly larger than B.
References
Abboud, A., Bodwin, G.: The 4/3 additive spanner exponent is tight. J. ACM 64(4), 28:1–28:20 (2017). https://doi.org/10.1145/3088511
Abboud, A., Bodwin, G., Pettie, S.: A hierarchy of lower bounds for sublinear additive spanners. In: Klein, P.N. (ed.) Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, 16–19 January, pp. 568–576. SIAM (2017). https://doi.org/10.1137/1.9781611974782.36
Ahmed, R., Bodwin, G., Hamm, K., Kobourov, S., Spence, R.: On additive spanners in weighted graphs with local error. In: 47th International Workshop on Graph-Theoretic Concepts in Computer Science (2021)
Ahmed, R., et al.: Graph spanners: a tutorial review. Comput. Sci. Rev. 37, 100–253 (2020). https://doi.org/10.1016/j.cosrev.2020.100253. http://www.sciencedirect.com/science/article/pii/S1574013719302539
Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28, 1167–1181 (1999). https://doi.org/10.1137/S0097539796303421
Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discret. Comput. Geom. 9(1), 81–100 (1993). https://doi.org/10.1007/BF02189308
Bartal, Y., Filtser, A., Neiman, O.: On notions of distortion and an almost minimum spanning tree with constant average distortion. J. Comput. Syst. Sci. 105, 116–129 (2019). https://doi.org/10.1016/J.JCSS.2019.04.006
Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive spanners and (\(\alpha \), \(\beta \))-spanners. ACM Trans. Algorithms (TALG) 7(1), 5 (2010)
Bodwin, G.: An alternate proof of near-optimal light spanners. CoRR abs/2305.18647 (2023). https://doi.org/10.48550/arXiv.2305.18647
Bodwin, G., Williams, V.V.: Very sparse additive spanners and emulators. In: Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015, pp. 377–382. Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2688073.2688103
Borradaile, G., Le, H., Wulff-Nilsen, C.: Minor-free graphs have light spanners. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science, FOCS 2017, pp. 767–778 (2017). https://doi.org/10.1109/FOCS.2017.76
Borradaile, G., Le, H., Wulff-Nilsen, C.: Greedy spanners are optimal in doubling metrics. In: Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pp. 2371–2379 (2019). https://doi.org/10.1137/1.9781611975482.145
Chandra, B., Das, G., Narasimhan, G., Soares, J.: New sparseness results on graph spanners. In: Proceedings of the Eighth Annual Symposium on Computational Geometry, pp. 192–201. ACM (1992)
Chechik, S.: New additive spanners. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 498–512. Society for Industrial and Applied Mathematics (2013)
Chechik, S., Wulff-Nilsen, C.: Near-optimal light spanners. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 883–892. Society for Industrial and Applied Mathematics (2016)
Elkin, M., Gitlitz, Y., Neiman, O.: Almost shortest paths with near-additive error in weighted graphs. In: Czumaj, A., Xin, Q. (eds.) 18th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2022, Tórshavn, Faroe Islands, 27–29 June 2022. LIPIcs, vol. 227, pp. 23:1–23:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPICS.SWAT.2022.23
Elkin, M., Gitlitz, Y., Neiman, O.: Improved weighted additive spanners. Distrib. Comput. 36(3), 385–394 (2023). https://doi.org/10.1007/S00446-022-00433-X
Elkin, M., Neiman, O.: Efficient algorithms for constructing very sparse spanners and emulators. ACM Trans. Algorithms 15(1), 4:1–4:29 (2019). https://doi.org/10.1145/3274651
Elkin, M., Neiman, O., Solomon, S.: Light spanners. In: International Colloquium on Automata, Languages, and Programming, pp. 442–452. Springer (2014)
Elkin, M., Peleg, D.: \((1+\varepsilon ,\beta )\)-spanner constructions for general graphs. SIAM J. Comput. 33(3), 608–631 (2004). https://doi.org/10.1137/S0097539701393384
Erdős, P.: Extremal problems in graph theory. In: Proceedings of the Symposium on Theory of Graphs and its Applications, pp. 29–36 (1963)
Filtser, A., Gitlitz, Y., Neiman, O.: Light, reliable spanners. In: SOCG 2024 (2024, to apear)
Filtser, A., Neiman, O.: Light spanners for high dimensional norms via stochastic decompositions. Algorithmica 84(10), 2987–3007 (2022). https://doi.org/10.1007/S00453-022-00994-0
Filtser, A., Solomon, S.: The greedy spanner is existentially optimal. SIAM J. Comput. 49(2), 429–447 (2020). https://doi.org/10.1137/18M1210678, preliminary version published in PODC 2016
Gottlieb, L.: A light metric spanner. In: IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17–20 October 2015, pp. 759–772 (2015). https://doi.org/10.1109/FOCS.2015.52
Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning trees and shortest-path trees. Algorithmica 14(4), 305–321 (1995)
Le, H., Solomon, S.: A unified framework for light spanners. In: Saha, B., Servedio, R.A. (eds.) Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, 20–23 June 2023, pp. 295–308. ACM (2023). https://doi.org/10.1145/3564246.3585185
Neiman, O., Shabat, I.: A unified framework for hopsets. In: Chechik, S., Navarro, G., Rotenberg, E., Herman, G. (eds.) 30th Annual European Symposium on Algorithms, ESA 2022, Berlin/Potsdam, Germany, 5–9 September 2022. LIPIcs, vol. 244, pp. 81:1–81:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPICS.ESA.2022.81
Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13(1), 99–116 (1989)
Pettie, S.: Low distortion spanners. ACM Trans. Algorithms 6(1), 7:1–7:22 (2009). https://doi.org/10.1145/1644015.1644022
Salowe, J.S.: Construction of multidimensional spanner graphs, with applications to minimum spanning trees. In: Proceedings of the Seventh Annual Symposium on Computational Geometry, SCG 1991, pp. 256–261. Association for Computing Machinery, New York, NY, USA (1991). https://doi.org/10.1145/109648.109677
Tan, Z., Zhang, T.: Almost-optimal sublinear additive spanners. In: Saha, B., Servedio, R.A. (eds.) Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, 20–23 June 2023, pp. 281–294. ACM (2023). https://doi.org/10.1145/3564246.3585125
Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005). https://doi.org/10.1145/1044731.1044732
Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors. In: SODA 2006, pp. 802–809 (2006). https://doi.org/10.1145/1109557.1109645
Vaidya, P.M.: A sparse graph almost as good as the complete graph on points in K dimensions. Discret. Comput. Geom. 6(3), 369–381 (1991). https://doi.org/10.1007/BF02574695
Woodruff, D.: Additive spanners in nearly quadratic time. In: International Colloquium on Automata, Languages, and Programming, pp. 463–474. Springer (2010)
Acknowledgments
This study was funded by Israel Science Foundation (grant No. 970/21).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gitlitz, Y., Neiman, O., Spence, R. (2025). Lightweight Near-Additive Spanners. In: Kráľ, D., Milanič, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2024. Lecture Notes in Computer Science, vol 14760. Springer, Cham. https://doi.org/10.1007/978-3-031-75409-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-75409-8_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75408-1
Online ISBN: 978-3-031-75409-8
eBook Packages: Computer ScienceComputer Science (R0)