Abstract
Dominating sets in graphs are often used to model monitoring problems, by posting guards on the vertices of the dominating set. If an (unguarded) vertex is attacked, at least one guard can then react by moving there. This yields a new set of guards, which may not be dominating anymore. A dominating set is eternal if one can endlessly resist to attacks.
From the attacker’s perspective, if we are given a non-eternal dominating set, the question is to determine how fast can we provoke an attack that cannot be handled by a neighboring guard. We investigate this question from a computational complexity point of view, by showing that this question is \(\textsf{PSPACE}\)-hard, even for graph classes where finding a minimum eternal dominating set is in \(\textsf{P}\).
We then complement this result by giving polynomial time algorithms for cographs and trees, and showing a connection with treedepth for the latter. We also investigate the problem from a parameterized complexity perspective, mainly considering two parameters: the number of guards and the number of steps.
This research was supported by the ANR project P-GASE (ANR-21-CE48-0001-01).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Note that this decomposition is not necessarily unique but, for algorithmic purposes, we only need that such a decomposition tree exists and can be computed in polynomial time which is indeed the case.
References
Anderson, M., Barrientos, C., Brigham, R., Carrington, R., Vitray, J., Yellen, J.: Maximum demand graphs for eternal security. J. Combin. Math. Combin. Comput. 61, 111–128 (2007)
Anuradha, V., Jain, C., Snoeyink, J., Szabó, T.: How long can a graph be kept planar? Electron. J. Combin. 15(1) (2008)
Bagan, G., Joffard, A., Kheddouci, H.: Eternal dominating sets on digraphs and orientations of graphs. Discret. Appl. Math. 291, 99–115 (2021)
Bard, S., Duffy, C., Edwards, M., Macgillivray, G., Yang, F.: Eternal domination in split graphs. J. Comb. Math. Comb. Comput. 101, 121–130 (2017)
Blažej, V., Křišťan, J.M., Valla, T.: Efficient attack sequences in m-eternal domination. arXiv:2204.02720 (2022)
Blažej, V., Křišťan, J.M., Valla, T.: Computing m-eternal domination number of cactus graphs in linear time. arxiv:2301.05155 (2023)
Braga, A., de Souza, C.C., Lee, O.: The eternal dominating set problem for proper interval graphs. Inf. Process. Lett. 115(6), 582–587 (2015)
Brešar, B., Dorbec, P., Klavžar, S., Košmrlj, G., Renault, G.: Complexity of the game domination problem. Theoret. Comput. Sci. 648, 1–7 (2016)
Burger, A., Cockayne, E., Grundlingh, W., Mynhardt, C., Van Vuuren, J., Winterbach, W.: Finite order domination in graphs. J. Comb. Math. Comb. Comput. 49, 159–176 (2004)
Burger, A., Cockayne, E., Gründlingh, W., Mynhardt, C., Vuuren, J.V., Winterbach, W.: Infinite order domination in graphs. J. Comb. Math. Comb. Comput. 50, 179–194 (2004)
Cohen, N., Martins, N.A., Mc Inerney, F., Nisse, N., Pérennes, S., Sampaio, R.: Spy-game on graphs: complexity and simple topologies. Theoret. Comput. Sci. 725, 1–15 (2018)
Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM J. Comput. 14(4), 926–934 (1985)
Diestel, R.: Graph Theory: Springer Graduate Text GTM 173. Springer Graduate Texts in Mathematics (GTM). Springer (2012)
Fomin, F.V., Heggernes, P., van Leeuwen, E.J.: The firefighter problem on graph classes. Theoret. Comput. Sci. 613, 38–50 (2016)
Gledel, V., Iršič, V., Klavžar, S.: Fast winning strategies for the maker-breaker domination game. Electron. Notes Theor. Comput. Sci. 346, 473–484 (2019)
Goddard, W., Hedetniemi, S., Hedetniemi, S.: Eternal security in graphs. J. Combin. Math. Combin. Comput. 52 (2005)
Goldwasser, J.L., Klostermeyer, W.F.: Tight bounds for eternal dominating sets in graphs. Discret. Math. 308(12), 2589–2593 (2008)
Hefetz, D., Krivelevich, M., Stojaković, M., Szabó, T.: Fast winning strategies in maker-breaker games. J. Combin. Theory Ser. B 99(1), 39–47 (2009)
Inerney, F.M., Nisse, N., Pérennes, S.: Eternal domination: D-dimensional cartesian and strong grids and everything in between. Algorithmica 83(5), 1459–1492 (2021)
Iyer, A.V., Ratliff, H.D., Vijayan, G.: Optimal node ranking of trees. Inf. Process. Lett. 28(5), 225–229 (1988)
Klostermeyer, W., MacGillivray, G.: Eternal security in graphs of fixed independence number. J. Comb. Math. Comb. Comput. 63, 11 (2007)
Klostermeyer, W., MacGillivray, G.: Eternal dominating sets in graphs. J. Combin. Math. Combin. Comput. 68, 97–111 (2009)
Klostermeyer, W.F., Mynhardt, C.: Eternal and secure domination in graphs. In: Topics in Domination in Graphs, pp. 445–478. Springer (2020)
Lamprou, I., Martin, R., Schewe, S.: Eternally dominating large grids. Theoret. Comput. Sci. 794, 27–46 (2019)
Nešetřil, J., De Mendez, P.O.: Sparsity: Graphs, Structures, and Algorithms, vol. 28. Springer, Heidelberg (2012)
Rinemberg, M., Soulignac, F.: The eternal dominating set problem for interval graphs. Inf. Process. Lett. 146, 06 (2019)
Šámal, R., Valla, T.: The guarding game is E-complete. Theoret. Comput. Sci. 521, 92–106 (2014)
Virgile, V.: Mobile guards’ strategies for graph surveillance and protection. Ph.D. thesis, University of Victoria (2024)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bagan, G., Bousquet, N., Oijid, N., Pierron, T. (2025). Fast Winning Strategies for the Attacker in Eternal Domination. In: Kráľ, D., Milanič, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2024. Lecture Notes in Computer Science, vol 14760. Springer, Cham. https://doi.org/10.1007/978-3-031-75409-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-75409-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75408-1
Online ISBN: 978-3-031-75409-8
eBook Packages: Computer ScienceComputer Science (R0)