Skip to main content

Fast Winning Strategies for the Attacker in Eternal Domination

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2024)

Abstract

Dominating sets in graphs are often used to model monitoring problems, by posting guards on the vertices of the dominating set. If an (unguarded) vertex is attacked, at least one guard can then react by moving there. This yields a new set of guards, which may not be dominating anymore. A dominating set is eternal if one can endlessly resist to attacks.

From the attacker’s perspective, if we are given a non-eternal dominating set, the question is to determine how fast can we provoke an attack that cannot be handled by a neighboring guard. We investigate this question from a computational complexity point of view, by showing that this question is \(\textsf{PSPACE}\)-hard, even for graph classes where finding a minimum eternal dominating set is in \(\textsf{P}\).

We then complement this result by giving polynomial time algorithms for cographs and trees, and showing a connection with treedepth for the latter. We also investigate the problem from a parameterized complexity perspective, mainly considering two parameters: the number of guards and the number of steps.

This research was supported by the ANR project P-GASE (ANR-21-CE48-0001-01).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that this decomposition is not necessarily unique but, for algorithmic purposes, we only need that such a decomposition tree exists and can be computed in polynomial time which is indeed the case.

References

  1. Anderson, M., Barrientos, C., Brigham, R., Carrington, R., Vitray, J., Yellen, J.: Maximum demand graphs for eternal security. J. Combin. Math. Combin. Comput. 61, 111–128 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Anuradha, V., Jain, C., Snoeyink, J., Szabó, T.: How long can a graph be kept planar? Electron. J. Combin. 15(1) (2008)

    Google Scholar 

  3. Bagan, G., Joffard, A., Kheddouci, H.: Eternal dominating sets on digraphs and orientations of graphs. Discret. Appl. Math. 291, 99–115 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bard, S., Duffy, C., Edwards, M., Macgillivray, G., Yang, F.: Eternal domination in split graphs. J. Comb. Math. Comb. Comput. 101, 121–130 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Blažej, V., Křišťan, J.M., Valla, T.: Efficient attack sequences in m-eternal domination. arXiv:2204.02720 (2022)

  6. Blažej, V., Křišťan, J.M., Valla, T.: Computing m-eternal domination number of cactus graphs in linear time. arxiv:2301.05155 (2023)

  7. Braga, A., de Souza, C.C., Lee, O.: The eternal dominating set problem for proper interval graphs. Inf. Process. Lett. 115(6), 582–587 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brešar, B., Dorbec, P., Klavžar, S., Košmrlj, G., Renault, G.: Complexity of the game domination problem. Theoret. Comput. Sci. 648, 1–7 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burger, A., Cockayne, E., Grundlingh, W., Mynhardt, C., Van Vuuren, J., Winterbach, W.: Finite order domination in graphs. J. Comb. Math. Comb. Comput. 49, 159–176 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Burger, A., Cockayne, E., Gründlingh, W., Mynhardt, C., Vuuren, J.V., Winterbach, W.: Infinite order domination in graphs. J. Comb. Math. Comb. Comput. 50, 179–194 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Cohen, N., Martins, N.A., Mc Inerney, F., Nisse, N., Pérennes, S., Sampaio, R.: Spy-game on graphs: complexity and simple topologies. Theoret. Comput. Sci. 725, 1–15 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM J. Comput. 14(4), 926–934 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diestel, R.: Graph Theory: Springer Graduate Text GTM 173. Springer Graduate Texts in Mathematics (GTM). Springer (2012)

    Google Scholar 

  14. Fomin, F.V., Heggernes, P., van Leeuwen, E.J.: The firefighter problem on graph classes. Theoret. Comput. Sci. 613, 38–50 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gledel, V., Iršič, V., Klavžar, S.: Fast winning strategies for the maker-breaker domination game. Electron. Notes Theor. Comput. Sci. 346, 473–484 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Goddard, W., Hedetniemi, S., Hedetniemi, S.: Eternal security in graphs. J. Combin. Math. Combin. Comput. 52 (2005)

    Google Scholar 

  17. Goldwasser, J.L., Klostermeyer, W.F.: Tight bounds for eternal dominating sets in graphs. Discret. Math. 308(12), 2589–2593 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hefetz, D., Krivelevich, M., Stojaković, M., Szabó, T.: Fast winning strategies in maker-breaker games. J. Combin. Theory Ser. B 99(1), 39–47 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Inerney, F.M., Nisse, N., Pérennes, S.: Eternal domination: D-dimensional cartesian and strong grids and everything in between. Algorithmica 83(5), 1459–1492 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iyer, A.V., Ratliff, H.D., Vijayan, G.: Optimal node ranking of trees. Inf. Process. Lett. 28(5), 225–229 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Klostermeyer, W., MacGillivray, G.: Eternal security in graphs of fixed independence number. J. Comb. Math. Comb. Comput. 63, 11 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Klostermeyer, W., MacGillivray, G.: Eternal dominating sets in graphs. J. Combin. Math. Combin. Comput. 68, 97–111 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Klostermeyer, W.F., Mynhardt, C.: Eternal and secure domination in graphs. In: Topics in Domination in Graphs, pp. 445–478. Springer (2020)

    Google Scholar 

  24. Lamprou, I., Martin, R., Schewe, S.: Eternally dominating large grids. Theoret. Comput. Sci. 794, 27–46 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nešetřil, J., De Mendez, P.O.: Sparsity: Graphs, Structures, and Algorithms, vol. 28. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  26. Rinemberg, M., Soulignac, F.: The eternal dominating set problem for interval graphs. Inf. Process. Lett. 146, 06 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Šámal, R., Valla, T.: The guarding game is E-complete. Theoret. Comput. Sci. 521, 92–106 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Virgile, V.: Mobile guards’ strategies for graph surveillance and protection. Ph.D. thesis, University of Victoria (2024)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Théo Pierron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bagan, G., Bousquet, N., Oijid, N., Pierron, T. (2025). Fast Winning Strategies for the Attacker in Eternal Domination. In: Kráľ, D., Milanič, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2024. Lecture Notes in Computer Science, vol 14760. Springer, Cham. https://doi.org/10.1007/978-3-031-75409-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75409-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75408-1

  • Online ISBN: 978-3-031-75409-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics