Skip to main content

Independent Set Reconfiguration in H-Free Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14760))

Included in the following conference series:

  • 176 Accesses

Abstract

Given a graph G and two independent sets of G, the independent set reconfiguration problem asks whether one independent set can be transformed into the other by moving a single vertex at a time, such that at each intermediate step we have an independent set of G. We study the complexity of this problem for H-free graphs under the token sliding and token jumping rule. Our contribution is twofold. First, we prove a reconfiguration analogue of Alekseev’s theorem for connected graphs H, showing that the problem is PSPACE-complete unless H is a path or a subdivision of the claw. We then show that under the token sliding rule the problem admits a polynomial-time algorithm if the input graph is fork-free, generalizing known results for \(P_4\)-free graphs and claw-free graphs. This implies a complete classification of the complexity of token sliding in H-free graphs, H being connected or not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If a token can jump to a non-neighbor then the independent set is not maximum.

References

  1. Alekseev, V.E.: The effect of local constraints on the complexity of determination of the graph independence number. In: Combinatorial-Algebraic Methods in Applied Mathematics, pp. 3–13 (1982)

    Google Scholar 

  2. Alekseev, V.E.: Polynomial algorithm for finding the largest independent sets in graphs without forks. Discrete Appl. Math. 135(1–3), 3–16 (2004). https://doi.org/10.1016/S0166-218X(02)00290-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartier, V.: Combinatorial and algorithmic aspects of reconfiguration. Aspects combinatoires et algorithmiques de la Reconfiguration. Ph.D. thesis, Grenoble Alpes University, France (2021)

    Google Scholar 

  4. Bartier, V., Bousquet, N., Dallard, C., Lomer, K., Mouawad, A.E.: On girth and the parameterized complexity of token sliding and token jumping. Algorithmica 83(9), 2914–2951 (2021). https://doi.org/10.1007/S00453-021-00848-1

    Article  MathSciNet  MATH  Google Scholar 

  5. Belavadi, M., Cameron, K., Merkel, O.: Reconfiguration of vertex colouring and forbidden induced subgraphs (2023)

    Google Scholar 

  6. Belmonte, R., Kim, E.J., Lampis, M., Mitsou, V., Otachi, Y., Sikora, F.: Token sliding on split graphs. Theory Comput. Syst. 65(4), 662–686 (2021). https://doi.org/10.1007/S00224-020-09967-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonamy, M., Bousquet, N.: Token sliding on chordal graphs. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 127–139. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-6_10

    Chapter  MATH  Google Scholar 

  8. Bonamy, M., Defrain, O., Klimosová, T., Lagoutte, A., Narboni, J.: On Vizing’s edge colouring question. J. Comb. Theory Ser. B 159, 126–139 (2023). https://doi.org/10.1016/J.JCTB.2022.10.005

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonamy, M., Dorbec, P., Ouvrard, P.: Dominating sets reconfiguration under token sliding. Discret. Appl. Math. 301, 6–18 (2021). https://doi.org/10.1016/J.DAM.2021.05.014

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonamy, M., et al.: Diameter of colorings under Kempe changes. Theor. Comput. Sci. 838, 45–57 (2020). https://doi.org/10.1016/J.TCS.2020.05.033

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonsma, P.S.: Independent set reconfiguration in cographs and their generalizations. J. Graph Theory 83(2), 164–195 (2016). https://doi.org/10.1002/JGT.21992

    Article  MathSciNet  MATH  Google Scholar 

  12. Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in claw-free graphs. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 86–97. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08404-6_8

    Chapter  MATH  Google Scholar 

  13. Bousquet, N., Mouawad, A.E., Nishimura, N., Siebertz, S.: A survey on the parameterized complexity of the independent set and (connected) dominating set reconfiguration problems. CoRR abs/2204.10526 (2022). https://doi.org/10.48550/ARXIV.2204.10526

  14. Bousquet, N., Perarnau, G.: Fast recoloring of sparse graphs. Eur. J. Comb. 52, 1–11 (2016). https://doi.org/10.1016/J.EJC.2015.08.001

  15. Brandstädt, A., Hoàng, C.T., Vanherpe, J.: On minimal prime extensions of a four-vertex graph in a prime graph. Discret. Math. 288(1–3), 9–17 (2004). https://doi.org/10.1016/J.DISC.2004.06.019

    Article  MathSciNet  MATH  Google Scholar 

  16. Demaine, E.D., et al.: Linear-time algorithm for sliding tokens on trees. Theor. Comput. Sci. 600, 132–142 (2015). https://doi.org/10.1016/J.TCS.2015.07.037

    Article  MathSciNet  MATH  Google Scholar 

  17. Dvorák, Z., Feghali, C.: A Thomassen-type method for planar graph recoloring. Eur. J. Comb. 95, 103319 (2021). https://doi.org/10.1016/J.EJC.2021.103319

    Article  MathSciNet  MATH  Google Scholar 

  18. Fox-Epstein, E., Hoang, D.A., Otachi, Y., Uehara, R.: Sliding token on bipartite permutation graphs. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 237–247. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48971-0_21

    Chapter  MATH  Google Scholar 

  19. Gerber, M.U., Hertz, A., Lozin, V.V.: Augmenting chains in graphs without a skew star. J. Comb. Theory Ser. B 96(3), 352–366 (2006). https://doi.org/10.1016/J.JCTB.2005.09.007

    Article  MathSciNet  MATH  Google Scholar 

  20. Grzesik, A., Klimosová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algorithm for maximum weight independent set on \(p_{6}\)-free graphs. ACM Trans. Algorithms 18(1), 4:1–4:57 (2022). https://doi.org/10.1145/3414473

  21. Haddadan, A., Ito, T., Mouawad, A.E., Nishimura, N., Ono, H., Suzuki, A., Tebbal, Y.: The complexity of dominating set reconfiguration. Theor. Comput. Sci. 651, 37–49 (2016). https://doi.org/10.1016/J.TCS.2016.08.016

    Article  MathSciNet  MATH  Google Scholar 

  22. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theor. Comput. Sci. 343(1–2), 72–96 (2005). https://doi.org/10.1016/J.TCS.2005.05.008

    Article  MathSciNet  MATH  Google Scholar 

  23. van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S., Wildon, M. (eds.) Surveys in Combinatorics 2013. London Mathematical Society Lecture Note Series, vol. 409, pp. 127–160. Cambridge University Press (2013). https://doi.org/10.1017/CBO9781139506748.005

  24. Ito, T., et al.: On the complexity of reconfiguration problems. Theor. Comput. Sci. 412(12–14), 1054–1065 (2011). https://doi.org/10.1016/J.TCS.2010.12.005

    Article  MathSciNet  MATH  Google Scholar 

  25. Ito, T., Kamiński, M., Ono, H.: Fixed-parameter tractability of token jumping on planar graphs. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp. 208–219. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13075-0_17

    Chapter  MATH  Google Scholar 

  26. Ito, T., Kamiński, M., Ono, H., Suzuki, A., Uehara, R., Yamanaka, K.: On the parameterized complexity for token jumping on graphs. In: Gopal, T.V., Agrawal, M., Li, A., Cooper, S.B. (eds.) TAMC 2014. LNCS, vol. 8402, pp. 341–351. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06089-7_24

    Chapter  MATH  Google Scholar 

  27. Ito, T., Kamiński, M., Ono, H., Suzuki, A., Uehara, R., Yamanaka, K.: Parameterized complexity of independent set reconfiguration problems. Discret. Appl. Math. 283, 336–345 (2020). https://doi.org/10.1016/J.DAM.2020.01.022

    Article  MathSciNet  MATH  Google Scholar 

  28. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfigurability problems. Theor. Comput. Sci. 439, 9–15 (2012). https://doi.org/10.1016/J.TCS.2012.03.004

    Article  MathSciNet  MATH  Google Scholar 

  29. Lokshtanov, D., Mouawad, A.E.: The complexity of independent set reconfiguration on bipartite graphs. ACM Trans. Algorithms 15(1), 1–19 (2019). https://doi.org/10.1145/3280825

    Article  MathSciNet  MATH  Google Scholar 

  30. Lokshtanov, D., Vatshelle, M., Villanger, Y.: Independent set in \({P}_5\)-free graphs in polynomial time. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pp. 570–581. SIAM (2014). https://doi.org/10.1137/1.9781611973402.43

  31. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory Ser. B 28(3), 284–304 (1980). https://doi.org/10.1016/0095-8956(80)90074-X

    Article  MathSciNet  MATH  Google Scholar 

  32. Mouawad, A.E., Nishimura, N., Raman, V., Siebertz, S.: Vertex cover reconfiguration and beyond. Algorithms 11(2), 20 (2018). https://doi.org/10.3390/A11020020

    Article  MathSciNet  MATH  Google Scholar 

  33. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. Algorithmica 78(1), 274–297 (2017). https://doi.org/10.1007/S00453-016-0159-2

    Article  MathSciNet  MATH  Google Scholar 

  34. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018). https://doi.org/10.3390/A11040052

    Article  MathSciNet  MATH  Google Scholar 

  35. Sbihi, N.: Algorithme de recherche d’un stable de cardinalite maximum dans un graphe sans etoile. Discret. Math. 29(1), 53–76 (1980). https://doi.org/10.1016/0012-365X(90)90287-R

    Article  MathSciNet  MATH  Google Scholar 

  36. Suzuki, A., Mouawad, A.E., Nishimura, N.: Reconfiguration of dominating sets. J. Comb. Optim. 32(4), 1182–1195 (2016). https://doi.org/10.1007/s10878-015-9947-x

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Martin Milanic for his insightful comments, in particular for pointing out that combining Theorems 2 and 3 with the result of [6] directly yields a complexity dichotomy for Token Sliding on H-free graphs for connected graphs H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Mühlenthaler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bartier, V., Bousquet, N., Mühlenthaler, M. (2025). Independent Set Reconfiguration in H-Free Graphs. In: Kráľ, D., Milanič, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2024. Lecture Notes in Computer Science, vol 14760. Springer, Cham. https://doi.org/10.1007/978-3-031-75409-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75409-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75408-1

  • Online ISBN: 978-3-031-75409-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics