Abstract
Given a graph G and two independent sets of G, the independent set reconfiguration problem asks whether one independent set can be transformed into the other by moving a single vertex at a time, such that at each intermediate step we have an independent set of G. We study the complexity of this problem for H-free graphs under the token sliding and token jumping rule. Our contribution is twofold. First, we prove a reconfiguration analogue of Alekseev’s theorem for connected graphs H, showing that the problem is PSPACE-complete unless H is a path or a subdivision of the claw. We then show that under the token sliding rule the problem admits a polynomial-time algorithm if the input graph is fork-free, generalizing known results for \(P_4\)-free graphs and claw-free graphs. This implies a complete classification of the complexity of token sliding in H-free graphs, H being connected or not.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
If a token can jump to a non-neighbor then the independent set is not maximum.
References
Alekseev, V.E.: The effect of local constraints on the complexity of determination of the graph independence number. In: Combinatorial-Algebraic Methods in Applied Mathematics, pp. 3–13 (1982)
Alekseev, V.E.: Polynomial algorithm for finding the largest independent sets in graphs without forks. Discrete Appl. Math. 135(1–3), 3–16 (2004). https://doi.org/10.1016/S0166-218X(02)00290-1
Bartier, V.: Combinatorial and algorithmic aspects of reconfiguration. Aspects combinatoires et algorithmiques de la Reconfiguration. Ph.D. thesis, Grenoble Alpes University, France (2021)
Bartier, V., Bousquet, N., Dallard, C., Lomer, K., Mouawad, A.E.: On girth and the parameterized complexity of token sliding and token jumping. Algorithmica 83(9), 2914–2951 (2021). https://doi.org/10.1007/S00453-021-00848-1
Belavadi, M., Cameron, K., Merkel, O.: Reconfiguration of vertex colouring and forbidden induced subgraphs (2023)
Belmonte, R., Kim, E.J., Lampis, M., Mitsou, V., Otachi, Y., Sikora, F.: Token sliding on split graphs. Theory Comput. Syst. 65(4), 662–686 (2021). https://doi.org/10.1007/S00224-020-09967-8
Bonamy, M., Bousquet, N.: Token sliding on chordal graphs. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 127–139. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-6_10
Bonamy, M., Defrain, O., Klimosová, T., Lagoutte, A., Narboni, J.: On Vizing’s edge colouring question. J. Comb. Theory Ser. B 159, 126–139 (2023). https://doi.org/10.1016/J.JCTB.2022.10.005
Bonamy, M., Dorbec, P., Ouvrard, P.: Dominating sets reconfiguration under token sliding. Discret. Appl. Math. 301, 6–18 (2021). https://doi.org/10.1016/J.DAM.2021.05.014
Bonamy, M., et al.: Diameter of colorings under Kempe changes. Theor. Comput. Sci. 838, 45–57 (2020). https://doi.org/10.1016/J.TCS.2020.05.033
Bonsma, P.S.: Independent set reconfiguration in cographs and their generalizations. J. Graph Theory 83(2), 164–195 (2016). https://doi.org/10.1002/JGT.21992
Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in claw-free graphs. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 86–97. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08404-6_8
Bousquet, N., Mouawad, A.E., Nishimura, N., Siebertz, S.: A survey on the parameterized complexity of the independent set and (connected) dominating set reconfiguration problems. CoRR abs/2204.10526 (2022). https://doi.org/10.48550/ARXIV.2204.10526
Bousquet, N., Perarnau, G.: Fast recoloring of sparse graphs. Eur. J. Comb. 52, 1–11 (2016). https://doi.org/10.1016/J.EJC.2015.08.001
Brandstädt, A., Hoàng, C.T., Vanherpe, J.: On minimal prime extensions of a four-vertex graph in a prime graph. Discret. Math. 288(1–3), 9–17 (2004). https://doi.org/10.1016/J.DISC.2004.06.019
Demaine, E.D., et al.: Linear-time algorithm for sliding tokens on trees. Theor. Comput. Sci. 600, 132–142 (2015). https://doi.org/10.1016/J.TCS.2015.07.037
Dvorák, Z., Feghali, C.: A Thomassen-type method for planar graph recoloring. Eur. J. Comb. 95, 103319 (2021). https://doi.org/10.1016/J.EJC.2021.103319
Fox-Epstein, E., Hoang, D.A., Otachi, Y., Uehara, R.: Sliding token on bipartite permutation graphs. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 237–247. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48971-0_21
Gerber, M.U., Hertz, A., Lozin, V.V.: Augmenting chains in graphs without a skew star. J. Comb. Theory Ser. B 96(3), 352–366 (2006). https://doi.org/10.1016/J.JCTB.2005.09.007
Grzesik, A., Klimosová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algorithm for maximum weight independent set on \(p_{6}\)-free graphs. ACM Trans. Algorithms 18(1), 4:1–4:57 (2022). https://doi.org/10.1145/3414473
Haddadan, A., Ito, T., Mouawad, A.E., Nishimura, N., Ono, H., Suzuki, A., Tebbal, Y.: The complexity of dominating set reconfiguration. Theor. Comput. Sci. 651, 37–49 (2016). https://doi.org/10.1016/J.TCS.2016.08.016
Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theor. Comput. Sci. 343(1–2), 72–96 (2005). https://doi.org/10.1016/J.TCS.2005.05.008
van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S., Wildon, M. (eds.) Surveys in Combinatorics 2013. London Mathematical Society Lecture Note Series, vol. 409, pp. 127–160. Cambridge University Press (2013). https://doi.org/10.1017/CBO9781139506748.005
Ito, T., et al.: On the complexity of reconfiguration problems. Theor. Comput. Sci. 412(12–14), 1054–1065 (2011). https://doi.org/10.1016/J.TCS.2010.12.005
Ito, T., Kamiński, M., Ono, H.: Fixed-parameter tractability of token jumping on planar graphs. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp. 208–219. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13075-0_17
Ito, T., Kamiński, M., Ono, H., Suzuki, A., Uehara, R., Yamanaka, K.: On the parameterized complexity for token jumping on graphs. In: Gopal, T.V., Agrawal, M., Li, A., Cooper, S.B. (eds.) TAMC 2014. LNCS, vol. 8402, pp. 341–351. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06089-7_24
Ito, T., Kamiński, M., Ono, H., Suzuki, A., Uehara, R., Yamanaka, K.: Parameterized complexity of independent set reconfiguration problems. Discret. Appl. Math. 283, 336–345 (2020). https://doi.org/10.1016/J.DAM.2020.01.022
Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfigurability problems. Theor. Comput. Sci. 439, 9–15 (2012). https://doi.org/10.1016/J.TCS.2012.03.004
Lokshtanov, D., Mouawad, A.E.: The complexity of independent set reconfiguration on bipartite graphs. ACM Trans. Algorithms 15(1), 1–19 (2019). https://doi.org/10.1145/3280825
Lokshtanov, D., Vatshelle, M., Villanger, Y.: Independent set in \({P}_5\)-free graphs in polynomial time. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pp. 570–581. SIAM (2014). https://doi.org/10.1137/1.9781611973402.43
Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory Ser. B 28(3), 284–304 (1980). https://doi.org/10.1016/0095-8956(80)90074-X
Mouawad, A.E., Nishimura, N., Raman, V., Siebertz, S.: Vertex cover reconfiguration and beyond. Algorithms 11(2), 20 (2018). https://doi.org/10.3390/A11020020
Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. Algorithmica 78(1), 274–297 (2017). https://doi.org/10.1007/S00453-016-0159-2
Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018). https://doi.org/10.3390/A11040052
Sbihi, N.: Algorithme de recherche d’un stable de cardinalite maximum dans un graphe sans etoile. Discret. Math. 29(1), 53–76 (1980). https://doi.org/10.1016/0012-365X(90)90287-R
Suzuki, A., Mouawad, A.E., Nishimura, N.: Reconfiguration of dominating sets. J. Comb. Optim. 32(4), 1182–1195 (2016). https://doi.org/10.1007/s10878-015-9947-x
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bartier, V., Bousquet, N., Mühlenthaler, M. (2025). Independent Set Reconfiguration in H-Free Graphs. In: Kráľ, D., Milanič, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2024. Lecture Notes in Computer Science, vol 14760. Springer, Cham. https://doi.org/10.1007/978-3-031-75409-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-75409-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75408-1
Online ISBN: 978-3-031-75409-8
eBook Packages: Computer ScienceComputer Science (R0)