Abstract
Problems from metric graph theory like Metric Dimension, Geodetic Set, and Strong Metric Dimension have recently had a strong impact in parameterized complexity by being the first known problems in NP to admit double-exponential lower bounds in the treewidth, and even in the vertex cover number for the latter, assuming the Exponential Time Hypothesis. We initiate the study of enumerating minimal solution sets for these problems and show that they are also of great interest in enumeration. Specifically, we show that enumerating minimal resolving sets in graphs and minimal geodetic sets in split graphs are equivalent to enumerating minimal transversals in hypergraphs (denoted Trans-Enum), whose solvability in total-polynomial time is one of the most important open problems in algorithmic enumeration. This provides two new natural examples to a question that emerged in recent works: for which vertex (or edge) set graph property \(\varPi \) is the enumeration of minimal (or maximal) subsets satisfying \(\varPi \) equivalent to Trans-Enum? As very few properties are known to fit within this context—namely, those related to minimal domination—our results make significant progress in characterizing such properties, and provide new angles to approach Trans-Enum. In contrast, we observe that minimal strong resolving sets can be enumerated with polynomial delay. Additionally, we consider cases where our reductions do not apply, namely graphs with no long induced paths, and show both positive and negative results related to the enumeration and extension of partial solutions.
This work is an extended abstract of [10].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
The different notions from enumeration complexity are defined in Sect. 2.
- 2.
An enumeration problem is at least as hard as another enumeration problem if a total-polynomial-time algorithm for the first implies a total-polynomial-time algorithm for the second; the problems are (polynomially) equivalent if the reverse direction also holds.
- 3.
As Trans-Enum is in \(\textsf{QP}\) (quasi-polynomial time) and it is believed that \(\textsf {NP}\not \subseteq \textsf{QP}\).
References
Abu-Khzam, F.N., Fernau, H., Gras, B., Liedloff, M., Mann, K.: Enumerating minimal connected dominating sets. In: 30th Annual European Symposium on Algorithms (ESA 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2022)
Adaricheva, K.V., Nation, J.B.: Discovery of the D-basis in binary tables based on hypergraph dualization. Theoret. Comput. Sci. 658, 307–315 (2017)
Agol, I.: The virtual Haken conjecture (with an appendix by Ian Agol, Daniel Groves and Jason Manning). Doc. Math. 18, 1045–1087 (2013)
Ahn, J., Jaffke, L., Kwon, O., Lima, P.T.: Well-partitioned chordal graphs. Discret. Math. 345(10), 112985 (2022)
Bandelt, H.-J., Chepoi, V., Knauer, K.: COMs: complexes of oriented matroids. J. Comb. Theory Ser. A 156, 195–237 (2018)
Bandelt, H.-J., Dress, A.W.M.: Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Mol. Phylogenet. Evol. 1(3), 242–252 (1992)
Beerliova, Z., et al.: Network discovery and verification. IEEE J. Sel. Area Commun. 24(12), 2168–2181 (2006)
Bensmail, J., Mazauric, D., Mc Inerney, F., Nisse, N., Pérennes, S.: Sequential metric dimension. Algorithmica 82(10), 2867–2901 (2020)
Berge, C.: Hypergraphs: Combinatorics of Finite Sets, vol. 45. Elsevier, Amsterdam (1984)
Bergougnoux, B., Defrain, O., Mc Inerney, F.: Enumerating minimal solution sets for metric graph problems. arXiv preprint arXiv:2309.17419 (2023)
Birkhoff, G.: Lattice Theory, vol. 25. American Mathematical Society (1940)
Bodlaender, H., Boros, E., Heggernes, P., Kratsch, D.: Open problems of the Lorentz workshop, “Enumeration algorithms using structure”. Department of Information and Computing Sciences Utrecht University, Utrecht, The Netherlands (2015)
Bonamy, M., Defrain, O., Heinrich, M., Pilipczuk, M., Raymond, J.-F.: Enumerating minimal dominating sets in \({K}_t\)-free and variants. ACM Trans. Algorithms 16(3), 1–23 (2020)
Bonamy, M., Defrain, O., Micek, P., Nourine, L.: Enumerating minimal dominating sets in the (in)comparability graphs of bounded dimension posets. arXiv preprint arXiv:2004.07214 (2020)
Capelli, F., Strozecki, Y.: Geometric amortization of enumeration algorithms. In: 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). LIPIcs, vol. 254, pp. 18:1–18:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)
Chakraborty, D., Das, S., Foucaud, F., Gahlawat, H., Lajou, D., Roy, B.: Algorithms and complexity for geodetic Sets on planar and chordal graphs. In: 31st International Symposium on Algorithms and Computation (ISAAC 2020). LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2020)
Chakraborty, D., Foucaud, F., Majumdar, D., Tale, P.: Tight (double) exponential bounds for identification problems: locating-dominating set and test cover. arXiv preprint arXiv:2402.08346 (2024)
Chalopin, J., Chepoi, V., Mc Inerney, F., Ratel, S.: Non-clashing teaching maps for balls in graphs. In: Proceedings of the 37th Annual Conference on Learning Theory (COLT 2024) (2024)
Chandran, S., Issac, D., Karrenbauer, A.: On the parameterized complexity of biclique cover and partition. In: 11th International Symposium on Parameterized and Exact Computation (IPEC 2016). LIPIcs, vol. 63, pp. 11:1–11:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)
Conte, A., Grossi, R., Kanté, M.M., Marino, A., Uno, T., Wasa, K.: Listing induced steiner subgraphs as a compact way to discover steiner trees in graphs. In: 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)
Conte, A., Kanté, M.M., Marino, A., Uno, T.: Maximal irredundant set enumeration in bounded-degeneracy and bounded-degree hypergraphs. In: Colbourn, C.J., Grossi, R., Pisanti, N. (eds.) IWOCA 2019. LNCS, vol. 11638, pp. 148–159. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25005-8_13
Courcelle, B.: Linear delay enumeration and monadic second-order logic. Discret. Appl. Math. 157(12), 2675–2700 (2009)
Cygan, M., Pilipczuk, M., Pilipczuk, M.: Known algorithms for edge clique cover are probably optimal. SIAM J. Comput. 45(1), 67–83 (2016)
Defrain, O., Nourine, L.: Dualization in lattices given by implicational bases. Theoret. Comput. Sci. 814, 169–176 (2020)
Defrain, O., Nourine, L., Vilmin, S.: Translating between the representations of a ranked convex geometry. Discret. Math. 344(7), 112399 (2021)
Díaz, J., Pottonen, O., Serna, M., van Leeuwen, E.J.: Complexity of metric dimension on planar graphs. J. Comput. Syst. Sci. 83(1), 132–158 (2017)
Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer (2012)
Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. SIAM J. Comput. 24(6), 1278–1304 (1995)
Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and generating hypergraph transversals. SIAM J. Comput. 32(2), 514–537 (2003)
Eiter, T., Makino, K., Gottlob, G.: Computational aspects of monotone dualization: a brief survey. Discret. Appl. Math. 156(11), 2035–2049 (2008)
Ekim, T., Erey, A., Heggernes, P., van ’t Hof, P., Meister, D.: Computing minimum geodetic sets of proper interval graphs. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 279–290. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29344-3_24
Elbassioni, K.: On dualization over distributive lattices. Discrete Math. Theor. Comput. Sci. 24(Discrete Algorithms) (2022)
Elbassioni, K., Rauf, I., Ray, S.: A global parallel algorithm for enumerating minimal transversals of geometric hypergraphs. Theoret. Comput. Sci. 767, 26–33 (2019)
Elbassioni, K.M.: Algorithms for dualization over products of partially ordered sets. SIAM J. Discrete Math. 23(1), 487–510 (2009)
Epstein, L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs: hard and easy cases. Algorithmica 72(4), 1130–1171 (2015)
Foucaud, F., et al.: Metric dimension and geodetic set parameterized by vertex cover. arXiv preprint arXiv:2405.01344 (2024)
Foucaud, F., et al.: Problems in NP can admit double-exponential lower bounds when parameterized by treewidth or vertex cover. In: Proceedings of the 51st International Colloquium on Automata, Languages and Programming (ICALP 2024) (2024)
Foucaud, F., Mertzios, G.B., Naserasr, R., Parreau, A., Valicov, P.: Identification, location-domination and metric dimension on interval and permutation graphs. II. Algorithms and complexity. Algorithmica 78, 914–944 (2017)
Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)
Golovach, P.A., Heggernes, P., Kanté, M.M., Kratsch, D., Sæther, S.H., Villanger, Y.: Output-polynomial enumeration on graphs of bounded (local) linear MIM-width. Algorithmica 80(2), 714–741 (2018)
Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combin. 2, 191–195 (1976)
Harary, F., Loukakis, E., Tsouros, C.: The geodetic number of a graph. Math. Comput. Model. 17(11), 89–95 (1993)
Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)
Johnson, M.: Structure-activity maps for visualizing the graph variables arising in drug design. J. Biopharm. Statist. 3, 203–236 (1993)
Kanté, M.M., Khoshkhah, K., Pourmoradnasseri, M.: Enumerating minimal transversals of hypergraphs without small holes. In: 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)
Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: On the enumeration of minimal dominating sets and related notions. SIAM J. Discret. Math. 28(4), 1916–1929 (2014)
Kanté, M.M., Limouzy, V., Mary, A., Nourine, L., Uno, T.: A polynomial delay algorithm for enumerating minimal dominating sets in chordal graphs. In: International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2015), pp. 138–153. Springer (2015)
Kanté, M.M., Nourine, L.: Polynomial time algorithms for computing a minimum hull set in distance-hereditary and chordal graphs. SIAM J. Discret. Math. 30(1), 311–326 (2016)
Karpovsky, M.G., Chakrabarty, K., Levitin, L.B.: On a new class of codes for identifying vertices in graphs. IEEE Trans. Information Theory 44(2), 599–611 (1998)
Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V.: On the dualization of hypergraphs with bounded edge-intersections and other related classes of hypergraphs. Theoret. Comput. Sci. 382(2), 139–150 (2007)
Mezzini, M.: Polynomial time algorithm for computing a minimum geodetic set in outerplanar graphs. Theoret. Comput. Sci. 745, 63–74 (2018)
Oellermann, O.R., Peters-Fransen, J.: The strong metric dimension of graphs and digraphs. Discret. Appl. Math. 155(3), 356–364 (2007)
Sebő, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res. 29(2), 383–393 (2004)
Slater, P.J.: Leaves of trees. In: Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing, pp. 549–559. Congressus Numerantium, No. XIV. Utilitas Mathematica (1975)
Slater, P.J.: Domination and location in acyclic graphs. Networks 17(1), 55–64 (1987)
Strozecki, Y.: Enumeration complexity. Bull. EATCS 1(129) (2019)
Tillquist, R.C., Lladser, M.E.: Low-dimensional representation of genomic sequences. J. Math. Biol. 79(1), 1–29 (2019). https://doi.org/10.1007/s00285-019-01348-1
Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)
Wild, M.: The joy of implications, aka pure horn formulas: mainly a survey. Theoret. Comput. Sci. 658, 264–292 (2017)
Acknowledgements
This work was supported by the ANR project DISTANCIA (ANR-17-CE40-0015) and the Austrian Science Fund (FWF, project Y1329). We would like to thank the anonymous reviewers for their careful reading.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bergougnoux, B., Defrain, O., Mc Inerney, F. (2025). Enumerating Minimal Solution Sets for Metric Graph Problems. In: Kráľ, D., Milanič, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2024. Lecture Notes in Computer Science, vol 14760. Springer, Cham. https://doi.org/10.1007/978-3-031-75409-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-75409-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75408-1
Online ISBN: 978-3-031-75409-8
eBook Packages: Computer ScienceComputer Science (R0)