Skip to main content

Enumerating Minimal Solution Sets for Metric Graph Problems

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14760))

Included in the following conference series:

  • 176 Accesses

Abstract

Problems from metric graph theory like Metric Dimension, Geodetic Set, and Strong Metric Dimension have recently had a strong impact in parameterized complexity by being the first known problems in NP to admit double-exponential lower bounds in the treewidth, and even in the vertex cover number for the latter, assuming the Exponential Time Hypothesis. We initiate the study of enumerating minimal solution sets for these problems and show that they are also of great interest in enumeration. Specifically, we show that enumerating minimal resolving sets in graphs and minimal geodetic sets in split graphs are equivalent to enumerating minimal transversals in hypergraphs (denoted Trans-Enum), whose solvability in total-polynomial time is one of the most important open problems in algorithmic enumeration. This provides two new natural examples to a question that emerged in recent works: for which vertex (or edge) set graph property \(\varPi \) is the enumeration of minimal (or maximal) subsets satisfying \(\varPi \) equivalent to Trans-Enum? As very few properties are known to fit within this context—namely, those related to minimal domination—our results make significant progress in characterizing such properties, and provide new angles to approach Trans-Enum. In contrast, we observe that minimal strong resolving sets can be enumerated with polynomial delay. Additionally, we consider cases where our reductions do not apply, namely graphs with no long induced paths, and show both positive and negative results related to the enumeration and extension of partial solutions.

This work is an extended abstract of [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The different notions from enumeration complexity are defined in Sect. 2.

  2. 2.

    An enumeration problem is at least as hard as another enumeration problem if a total-polynomial-time algorithm for the first implies a total-polynomial-time algorithm for the second; the problems are (polynomially) equivalent if the reverse direction also holds.

  3. 3.

    As Trans-Enum is in \(\textsf{QP}\) (quasi-polynomial time) and it is believed that \(\textsf {NP}\not \subseteq \textsf{QP}\).

References

  1. Abu-Khzam, F.N., Fernau, H., Gras, B., Liedloff, M., Mann, K.: Enumerating minimal connected dominating sets. In: 30th Annual European Symposium on Algorithms (ESA 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2022)

    Google Scholar 

  2. Adaricheva, K.V., Nation, J.B.: Discovery of the D-basis in binary tables based on hypergraph dualization. Theoret. Comput. Sci. 658, 307–315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agol, I.: The virtual Haken conjecture (with an appendix by Ian Agol, Daniel Groves and Jason Manning). Doc. Math. 18, 1045–1087 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ahn, J., Jaffke, L., Kwon, O., Lima, P.T.: Well-partitioned chordal graphs. Discret. Math. 345(10), 112985 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bandelt, H.-J., Chepoi, V., Knauer, K.: COMs: complexes of oriented matroids. J. Comb. Theory Ser. A 156, 195–237 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bandelt, H.-J., Dress, A.W.M.: Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Mol. Phylogenet. Evol. 1(3), 242–252 (1992)

    Article  MATH  Google Scholar 

  7. Beerliova, Z., et al.: Network discovery and verification. IEEE J. Sel. Area Commun. 24(12), 2168–2181 (2006)

    Article  MATH  Google Scholar 

  8. Bensmail, J., Mazauric, D., Mc Inerney, F., Nisse, N., Pérennes, S.: Sequential metric dimension. Algorithmica 82(10), 2867–2901 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berge, C.: Hypergraphs: Combinatorics of Finite Sets, vol. 45. Elsevier, Amsterdam (1984)

    MATH  Google Scholar 

  10. Bergougnoux, B., Defrain, O., Mc Inerney, F.: Enumerating minimal solution sets for metric graph problems. arXiv preprint arXiv:2309.17419 (2023)

  11. Birkhoff, G.: Lattice Theory, vol. 25. American Mathematical Society (1940)

    Google Scholar 

  12. Bodlaender, H., Boros, E., Heggernes, P., Kratsch, D.: Open problems of the Lorentz workshop, “Enumeration algorithms using structure”. Department of Information and Computing Sciences Utrecht University, Utrecht, The Netherlands (2015)

    Google Scholar 

  13. Bonamy, M., Defrain, O., Heinrich, M., Pilipczuk, M., Raymond, J.-F.: Enumerating minimal dominating sets in \({K}_t\)-free and variants. ACM Trans. Algorithms 16(3), 1–23 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bonamy, M., Defrain, O., Micek, P., Nourine, L.: Enumerating minimal dominating sets in the (in)comparability graphs of bounded dimension posets. arXiv preprint arXiv:2004.07214 (2020)

  15. Capelli, F., Strozecki, Y.: Geometric amortization of enumeration algorithms. In: 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). LIPIcs, vol. 254, pp. 18:1–18:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)

    Google Scholar 

  16. Chakraborty, D., Das, S., Foucaud, F., Gahlawat, H., Lajou, D., Roy, B.: Algorithms and complexity for geodetic Sets on planar and chordal graphs. In: 31st International Symposium on Algorithms and Computation (ISAAC 2020). LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2020)

    Google Scholar 

  17. Chakraborty, D., Foucaud, F., Majumdar, D., Tale, P.: Tight (double) exponential bounds for identification problems: locating-dominating set and test cover. arXiv preprint arXiv:2402.08346 (2024)

  18. Chalopin, J., Chepoi, V., Mc Inerney, F., Ratel, S.: Non-clashing teaching maps for balls in graphs. In: Proceedings of the 37th Annual Conference on Learning Theory (COLT 2024) (2024)

    Google Scholar 

  19. Chandran, S., Issac, D., Karrenbauer, A.: On the parameterized complexity of biclique cover and partition. In: 11th International Symposium on Parameterized and Exact Computation (IPEC 2016). LIPIcs, vol. 63, pp. 11:1–11:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

    Google Scholar 

  20. Conte, A., Grossi, R., Kanté, M.M., Marino, A., Uno, T., Wasa, K.: Listing induced steiner subgraphs as a compact way to discover steiner trees in graphs. In: 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

    Google Scholar 

  21. Conte, A., Kanté, M.M., Marino, A., Uno, T.: Maximal irredundant set enumeration in bounded-degeneracy and bounded-degree hypergraphs. In: Colbourn, C.J., Grossi, R., Pisanti, N. (eds.) IWOCA 2019. LNCS, vol. 11638, pp. 148–159. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25005-8_13

    Chapter  MATH  Google Scholar 

  22. Courcelle, B.: Linear delay enumeration and monadic second-order logic. Discret. Appl. Math. 157(12), 2675–2700 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cygan, M., Pilipczuk, M., Pilipczuk, M.: Known algorithms for edge clique cover are probably optimal. SIAM J. Comput. 45(1), 67–83 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Defrain, O., Nourine, L.: Dualization in lattices given by implicational bases. Theoret. Comput. Sci. 814, 169–176 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Defrain, O., Nourine, L., Vilmin, S.: Translating between the representations of a ranked convex geometry. Discret. Math. 344(7), 112399 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Díaz, J., Pottonen, O., Serna, M., van Leeuwen, E.J.: Complexity of metric dimension on planar graphs. J. Comput. Syst. Sci. 83(1), 132–158 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer (2012)

    Google Scholar 

  28. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. SIAM J. Comput. 24(6), 1278–1304 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and generating hypergraph transversals. SIAM J. Comput. 32(2), 514–537 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Eiter, T., Makino, K., Gottlob, G.: Computational aspects of monotone dualization: a brief survey. Discret. Appl. Math. 156(11), 2035–2049 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ekim, T., Erey, A., Heggernes, P., van ’t Hof, P., Meister, D.: Computing minimum geodetic sets of proper interval graphs. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 279–290. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29344-3_24

    Chapter  Google Scholar 

  32. Elbassioni, K.: On dualization over distributive lattices. Discrete Math. Theor. Comput. Sci. 24(Discrete Algorithms) (2022)

    Google Scholar 

  33. Elbassioni, K., Rauf, I., Ray, S.: A global parallel algorithm for enumerating minimal transversals of geometric hypergraphs. Theoret. Comput. Sci. 767, 26–33 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Elbassioni, K.M.: Algorithms for dualization over products of partially ordered sets. SIAM J. Discrete Math. 23(1), 487–510 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Epstein, L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs: hard and easy cases. Algorithmica 72(4), 1130–1171 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Foucaud, F., et al.: Metric dimension and geodetic set parameterized by vertex cover. arXiv preprint arXiv:2405.01344 (2024)

  37. Foucaud, F., et al.: Problems in NP can admit double-exponential lower bounds when parameterized by treewidth or vertex cover. In: Proceedings of the 51st International Colloquium on Automata, Languages and Programming (ICALP 2024) (2024)

    Google Scholar 

  38. Foucaud, F., Mertzios, G.B., Naserasr, R., Parreau, A., Valicov, P.: Identification, location-domination and metric dimension on interval and permutation graphs. II. Algorithms and complexity. Algorithmica 78, 914–944 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)

    Google Scholar 

  41. Golovach, P.A., Heggernes, P., Kanté, M.M., Kratsch, D., Sæther, S.H., Villanger, Y.: Output-polynomial enumeration on graphs of bounded (local) linear MIM-width. Algorithmica 80(2), 714–741 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combin. 2, 191–195 (1976)

    MathSciNet  MATH  Google Scholar 

  43. Harary, F., Loukakis, E., Tsouros, C.: The geodetic number of a graph. Math. Comput. Model. 17(11), 89–95 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  45. Johnson, M.: Structure-activity maps for visualizing the graph variables arising in drug design. J. Biopharm. Statist. 3, 203–236 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kanté, M.M., Khoshkhah, K., Pourmoradnasseri, M.: Enumerating minimal transversals of hypergraphs without small holes. In: 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

    Google Scholar 

  47. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: On the enumeration of minimal dominating sets and related notions. SIAM J. Discret. Math. 28(4), 1916–1929 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L., Uno, T.: A polynomial delay algorithm for enumerating minimal dominating sets in chordal graphs. In: International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2015), pp. 138–153. Springer (2015)

    Google Scholar 

  49. Kanté, M.M., Nourine, L.: Polynomial time algorithms for computing a minimum hull set in distance-hereditary and chordal graphs. SIAM J. Discret. Math. 30(1), 311–326 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Karpovsky, M.G., Chakrabarty, K., Levitin, L.B.: On a new class of codes for identifying vertices in graphs. IEEE Trans. Information Theory 44(2), 599–611 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  51. Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V.: On the dualization of hypergraphs with bounded edge-intersections and other related classes of hypergraphs. Theoret. Comput. Sci. 382(2), 139–150 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Mezzini, M.: Polynomial time algorithm for computing a minimum geodetic set in outerplanar graphs. Theoret. Comput. Sci. 745, 63–74 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. Oellermann, O.R., Peters-Fransen, J.: The strong metric dimension of graphs and digraphs. Discret. Appl. Math. 155(3), 356–364 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sebő, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res. 29(2), 383–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  55. Slater, P.J.: Leaves of trees. In: Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing, pp. 549–559. Congressus Numerantium, No. XIV. Utilitas Mathematica (1975)

    Google Scholar 

  56. Slater, P.J.: Domination and location in acyclic graphs. Networks 17(1), 55–64 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  57. Strozecki, Y.: Enumeration complexity. Bull. EATCS 1(129) (2019)

    Google Scholar 

  58. Tillquist, R.C., Lladser, M.E.: Low-dimensional representation of genomic sequences. J. Math. Biol. 79(1), 1–29 (2019). https://doi.org/10.1007/s00285-019-01348-1

    Article  MathSciNet  MATH  Google Scholar 

  59. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wild, M.: The joy of implications, aka pure horn formulas: mainly a survey. Theoret. Comput. Sci. 658, 264–292 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the ANR project DISTANCIA (ANR-17-CE40-0015) and the Austrian Science Fund (FWF, project Y1329). We would like to thank the anonymous reviewers for their careful reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Bergougnoux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bergougnoux, B., Defrain, O., Mc Inerney, F. (2025). Enumerating Minimal Solution Sets for Metric Graph Problems. In: Kráľ, D., Milanič, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2024. Lecture Notes in Computer Science, vol 14760. Springer, Cham. https://doi.org/10.1007/978-3-031-75409-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75409-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75408-1

  • Online ISBN: 978-3-031-75409-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics