Abstract
In this paper we investigate the existence of parameterized algorithms running in subexponential time for two fundamental cycle-hitting problems: Feedback Vertex Set and Triangle Hitting. We focus on the class of pseudo-disk graphs, which forms a common generalization of several graph classes where such results exist, like disk graphs and square graphs. In these graphs we show that given a geometric representation FVS can be solved in time \(2^{\mathcal {O}(k^{9/10}\log k)}n^{\mathcal {O}(1)}\) and TH in time \(2^{\mathcal {O}(k^{3/4}\log k)}n^{\mathcal {O}(1)}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Informally: yes-instances are minor-closed and a solution on the (r, r)-grid has size \(\varOmega (r^2)\).
- 2.
We have been told in a private communication that it might be possible to extend the arguments of [12] for FVS in pseudo-disk graphs without a geometrical representation, and that the time complexity would be worse than the one we obtain.
- 3.
The ply is the maximum number of pseudo-disks sharing a common point.
References
An, S., Cho, K., Oh, E.: Faster algorithms for cycle hitting problems on disk graphs. In: Morin, P., Suri, S. (eds.) WADS 2023. LNCS, vol. 14079, pp. 29–42. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38906-1_3
Berthe, G., Bougeret, M., Gonçalves, D., Raymond, J.F.: Subexponential algorithms in geometric graphs via the subquadratic grid minor property: the role of local radius. In: Bodlaender, H.L. (ed.) 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), vol. 294, pp. 11:1–11:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2024). https://doi.org/10.4230/LIPIcs.SWAT.2024.11, https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2024.11
Cygan, M., et al.: Parameterized Algorithms, 1st edn. Springer, Cham (2015)
Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and h-minor-free graphs. J. ACM 52(6), 866–893 (2005). https://doi.org/10.1145/1101821.1101823
Diestel, R.: Graph Theory. Graduate Texts in Mathematics. 3rd edn, vol. 173. no. 33, p. 12 (2005)
Dvořák, Z., Lokshtanov, D., Panolan, F., Saurabh, S., Xue, J., Zehavi, M.: Efficient approximation for subgraph-hitting problems in sparse graphs and geometric intersection graphs. arXiv e-prints pp. arXiv–2304 (2023)
Dvořák, Z., Norin, S.: Treewidth of graphs with balanced separations. J. Comb. Theory, Series B 137, 137–144 (2019). https://doi.org/10.1016/j.jctb.2018.12.007
Fomin, F.V., Lokshtanov, D., Saurabh, S.: Excluded grid minors and efficient polynomial-time approximation schemes. J. ACM (JACM) 65(2), 1–44 (2018)
Fox, J., Pach, J.: Touching stings (2012). private communication
Kratochvíl, J.: Intersection graphs of noncrossing arc-connected sets in the plane. In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 257–270. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62495-3_53
Lee, J.R.: Separators in region intersection graphs. In: Papadimitriou, C.H. (ed.) 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 67, pp. 1:1–1:8. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017). https://doi.org/10.4230/LIPIcs.ITCS.2017.1
Lokshtanov, D., Panolan, F., Saurabh, S., Xue, J., Zehavi, M.: Subexponential parameterized algorithms on disk graphs (extended abstract). In: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2005–2031. SIAM (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Berthe, G., Bougeret, M., Gonçalves, D., Raymond, JF. (2025). Feedback Vertex Set for Pseudo-disk Graphs in Subexponential FPT Time. In: Kráľ, D., Milanič, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2024. Lecture Notes in Computer Science, vol 14760. Springer, Cham. https://doi.org/10.1007/978-3-031-75409-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-75409-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75408-1
Online ISBN: 978-3-031-75409-8
eBook Packages: Computer ScienceComputer Science (R0)