Skip to main content

Feedback Vertex Set for Pseudo-disk Graphs in Subexponential FPT Time

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2024)

Abstract

In this paper we investigate the existence of parameterized algorithms running in subexponential time for two fundamental cycle-hitting problems: Feedback Vertex Set and Triangle Hitting. We focus on the class of pseudo-disk graphs, which forms a common generalization of several graph classes where such results exist, like disk graphs and square graphs. In these graphs we show that given a geometric representation FVS can be solved in time \(2^{\mathcal {O}(k^{9/10}\log k)}n^{\mathcal {O}(1)}\) and TH in time \(2^{\mathcal {O}(k^{3/4}\log k)}n^{\mathcal {O}(1)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Informally: yes-instances are minor-closed and a solution on the (rr)-grid has size \(\varOmega (r^2)\).

  2. 2.

    We have been told in a private communication that it might be possible to extend the arguments of [12] for FVS in pseudo-disk graphs without a geometrical representation, and that the time complexity would be worse than the one we obtain.

  3. 3.

    The ply is the maximum number of pseudo-disks sharing a common point.

References

  1. An, S., Cho, K., Oh, E.: Faster algorithms for cycle hitting problems on disk graphs. In: Morin, P., Suri, S. (eds.) WADS 2023. LNCS, vol. 14079, pp. 29–42. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38906-1_3

    Chapter  MATH  Google Scholar 

  2. Berthe, G., Bougeret, M., Gonçalves, D., Raymond, J.F.: Subexponential algorithms in geometric graphs via the subquadratic grid minor property: the role of local radius. In: Bodlaender, H.L. (ed.) 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), vol. 294, pp. 11:1–11:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2024). https://doi.org/10.4230/LIPIcs.SWAT.2024.11, https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2024.11

  3. Cygan, M., et al.: Parameterized Algorithms, 1st edn. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  4. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and h-minor-free graphs. J. ACM 52(6), 866–893 (2005). https://doi.org/10.1145/1101821.1101823

    Article  MathSciNet  MATH  Google Scholar 

  5. Diestel, R.: Graph Theory. Graduate Texts in Mathematics. 3rd edn, vol. 173. no. 33, p. 12 (2005)

    Google Scholar 

  6. Dvořák, Z., Lokshtanov, D., Panolan, F., Saurabh, S., Xue, J., Zehavi, M.: Efficient approximation for subgraph-hitting problems in sparse graphs and geometric intersection graphs. arXiv e-prints pp. arXiv–2304 (2023)

    Google Scholar 

  7. Dvořák, Z., Norin, S.: Treewidth of graphs with balanced separations. J. Comb. Theory, Series B 137, 137–144 (2019). https://doi.org/10.1016/j.jctb.2018.12.007

    Article  MathSciNet  MATH  Google Scholar 

  8. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Excluded grid minors and efficient polynomial-time approximation schemes. J. ACM (JACM) 65(2), 1–44 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fox, J., Pach, J.: Touching stings (2012). private communication

    Google Scholar 

  10. Kratochvíl, J.: Intersection graphs of noncrossing arc-connected sets in the plane. In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 257–270. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62495-3_53

    Chapter  MATH  Google Scholar 

  11. Lee, J.R.: Separators in region intersection graphs. In: Papadimitriou, C.H. (ed.) 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 67, pp. 1:1–1:8. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017). https://doi.org/10.4230/LIPIcs.ITCS.2017.1

  12. Lokshtanov, D., Panolan, F., Saurabh, S., Xue, J., Zehavi, M.: Subexponential parameterized algorithms on disk graphs (extended abstract). In: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2005–2031. SIAM (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaétan Berthe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berthe, G., Bougeret, M., Gonçalves, D., Raymond, JF. (2025). Feedback Vertex Set for Pseudo-disk Graphs in Subexponential FPT Time. In: Kráľ, D., Milanič, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2024. Lecture Notes in Computer Science, vol 14760. Springer, Cham. https://doi.org/10.1007/978-3-031-75409-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75409-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75408-1

  • Online ISBN: 978-3-031-75409-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics