Abstract
The class XNLP consists of (parameterized) problems that can be solved nondeterministically in \(f(k)n^{O(1)}\) time and \(g(k)\log n\) space, where n is the size of the input instance and k the parameter. The class XALP consists of problems that can be solved in the above time and space with access to an additional stack. These two classes are a “natural home” for many standard graph problems and their generalizations.
In this paper, we show the hardness of several problems on planar graphs, parameterized by outerplanarity, treewidth and pathwidth, thus strengthening several existing results. In particular, we show XNLP-hardness of the following problems parameterized by outerplanarity: All-or-Nothing Flow, Target Outdegree Orientation, Capacitated (Red-Blue) Dominating Set, Target Set Selection etc. We also show the XNLP-completeness of Scattered Set parameterized by pathwidth and XALP-completeness parameterized by treewidth and outerplanarity.
K. Szilágyi—Supported by the project CRACKNP that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 853234).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dominating set. J. ACM 51(3), 363–384 (2004). https://doi.org/10.1145/990308.990309
Alexandersson, P.: NP-complete variants of some classical graph problems. arXiv, abs/2001.04120 (2020). http://arxiv.org/abs/2001.04120
Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994). https://doi.org/10.1145/174644.174650
Bodlaender, H.L.: A partial \(k\)-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209(1–2), 1–45 (1998). https://doi.org/10.1016/S0304-3975(97)00228-4
Bodlaender, H.L., Cornelissen, G., van der Wegen, M.: Problems hard for treewidth but easy for stable gonality. In: Bekos, M.A., Kaufmann, M. (eds.) Proceedings 48th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2022, volume 13453 of Lecture Notes in Computer Science, pp. 84–97. Springer (2022). https://doi.org/10.1007/978-3-031-15914-5_7
Bodlaender, H.L., Groenland, C., Jacob, H., Jaffke, L., Lima, P.T.: XNLP-completeness for parameterized problems on graphs with a linear structure. In: Dell, H., Nederlof, J. (eds.)Proceedings 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, volume 249 of LIPIcs, pp. 8:1–8:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.IPEC.2022.8
Bodlaender, H.L., Groenland, C., Jacob, H., Pilipczuk, M., Pilipczuk, M.: On the complexity of problems on tree-structured graphs. In: Dell, H., Nederlof, J., (eds.) Proceedings 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, volume 249 of LIPIcs, pp. 6:1–6:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.IPEC.2022.6
Bodlaender, H.L., Groenland, C., Nederlof, J., Swennenhuis, C.M.F.: Parameterized problems complete for nondeterministic FPT time and logarithmic space. In: Proceedings 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, pp. 193–204. IEEE (2022). https://doi.org/10.1109/FOCS52979.2021.00027
Bodlaender, H.L., Mannens, I., Oostveen, J.J., Pandey, S., van Leeuwen, E.J.: The parameterised complexity of integer multicommodity flow. In: Misra, N., Wahlström, M. (eds.)Proceedings 18th International Symposium on Parameterized and Exact Computation, IPEC 2023, volume 285 of LIPIcs, pp. 6:1–6:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPICS.IPEC.2023.6
Bodlaender, H.L., Szilágyi, K.: XNLP-hardness of parameterized problems on planar graphs. arXiv, abs/1004.2642 (2024). https://doi.org/10.48550/arXiv.2402.03087
Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I: basic results. SIAM J. Comput. 24(4), 873–921 (1995). https://doi.org/10.1137/S0097539792228228
Elberfeld, M., Stockhusen, C., Tantau, T.: On the space and circuit complexity of parameterized problems: classes and completeness. Algorithmica 71(3), 661–701 (2014). https://doi.org/10.1007/s00453-014-9944-y
Erdös, P., Turán, P.: On a problem of Sidon in additive number theory, and on some related problems. J. London Math. Soc. s1-16(4), 212–215 (1941). https://doi.org/10.1112/jlms/s1-16.4.212
Kammer, F.: Determining the smallest k Such That G Is k-Outerplanar. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 359–370. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75520-3_33
Kloks, T.: Treewidth, Computations and Approximations, volume 842 of Lecture Notes in Computer Science. Springer (1994). https://doi.org/10.1007/BFB0045375
Pilipczuk, M., Wrochna, M.: On space efficiency of algorithms working on structural decompositions of graphs. ACM Trans. Comput. Theo. 9(4), 18:1–18:36 (2018). https://doi.org/10.1145/3154856
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bodlaender, H.L., Szilágyi, K. (2025). XNLP-Hardness of Parameterized Problems on Planar Graphs. In: Kráľ, D., Milanič, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2024. Lecture Notes in Computer Science, vol 14760. Springer, Cham. https://doi.org/10.1007/978-3-031-75409-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-75409-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75408-1
Online ISBN: 978-3-031-75409-8
eBook Packages: Computer ScienceComputer Science (R0)