Skip to main content

XNLP-Hardness of Parameterized Problems on Planar Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2024)

Abstract

The class XNLP consists of (parameterized) problems that can be solved nondeterministically in \(f(k)n^{O(1)}\) time and \(g(k)\log n\) space, where n is the size of the input instance and k the parameter. The class XALP consists of problems that can be solved in the above time and space with access to an additional stack. These two classes are a “natural home” for many standard graph problems and their generalizations.

In this paper, we show the hardness of several problems on planar graphs, parameterized by outerplanarity, treewidth and pathwidth, thus strengthening several existing results. In particular, we show XNLP-hardness of the following problems parameterized by outerplanarity: All-or-Nothing Flow, Target Outdegree Orientation, Capacitated (Red-Blue) Dominating Set, Target Set Selection etc. We also show the XNLP-completeness of Scattered Set parameterized by pathwidth and XALP-completeness parameterized by treewidth and outerplanarity.

K. Szilágyi—Supported by the project CRACKNP that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 853234).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dominating set. J. ACM 51(3), 363–384 (2004). https://doi.org/10.1145/990308.990309

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexandersson, P.: NP-complete variants of some classical graph problems. arXiv, abs/2001.04120 (2020). http://arxiv.org/abs/2001.04120

  3. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994). https://doi.org/10.1145/174644.174650

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L.: A partial \(k\)-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209(1–2), 1–45 (1998). https://doi.org/10.1016/S0304-3975(97)00228-4

    Article  MathSciNet  MATH  Google Scholar 

  5. Bodlaender, H.L., Cornelissen, G., van der Wegen, M.: Problems hard for treewidth but easy for stable gonality. In: Bekos, M.A., Kaufmann, M. (eds.) Proceedings 48th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2022, volume 13453 of Lecture Notes in Computer Science, pp. 84–97. Springer (2022). https://doi.org/10.1007/978-3-031-15914-5_7

  6. Bodlaender, H.L., Groenland, C., Jacob, H., Jaffke, L., Lima, P.T.: XNLP-completeness for parameterized problems on graphs with a linear structure. In: Dell, H., Nederlof, J. (eds.)Proceedings 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, volume 249 of LIPIcs, pp. 8:1–8:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.IPEC.2022.8

  7. Bodlaender, H.L., Groenland, C., Jacob, H., Pilipczuk, M., Pilipczuk, M.: On the complexity of problems on tree-structured graphs. In: Dell, H., Nederlof, J., (eds.) Proceedings 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, volume 249 of LIPIcs, pp. 6:1–6:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.IPEC.2022.6

  8. Bodlaender, H.L., Groenland, C., Nederlof, J., Swennenhuis, C.M.F.: Parameterized problems complete for nondeterministic FPT time and logarithmic space. In: Proceedings 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, pp. 193–204. IEEE (2022). https://doi.org/10.1109/FOCS52979.2021.00027

  9. Bodlaender, H.L., Mannens, I., Oostveen, J.J., Pandey, S., van Leeuwen, E.J.: The parameterised complexity of integer multicommodity flow. In: Misra, N., Wahlström, M. (eds.)Proceedings 18th International Symposium on Parameterized and Exact Computation, IPEC 2023, volume 285 of LIPIcs, pp. 6:1–6:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPICS.IPEC.2023.6

  10. Bodlaender, H.L., Szilágyi, K.: XNLP-hardness of parameterized problems on planar graphs. arXiv, abs/1004.2642 (2024). https://doi.org/10.48550/arXiv.2402.03087

  11. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I: basic results. SIAM J. Comput. 24(4), 873–921 (1995). https://doi.org/10.1137/S0097539792228228

    Article  MathSciNet  MATH  Google Scholar 

  12. Elberfeld, M., Stockhusen, C., Tantau, T.: On the space and circuit complexity of parameterized problems: classes and completeness. Algorithmica 71(3), 661–701 (2014). https://doi.org/10.1007/s00453-014-9944-y

    Article  MathSciNet  MATH  Google Scholar 

  13. Erdös, P., Turán, P.: On a problem of Sidon in additive number theory, and on some related problems. J. London Math. Soc. s1-16(4), 212–215 (1941). https://doi.org/10.1112/jlms/s1-16.4.212

  14. Kammer, F.: Determining the smallest k Such That G Is k-Outerplanar. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 359–370. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75520-3_33

    Chapter  MATH  Google Scholar 

  15. Kloks, T.: Treewidth, Computations and Approximations, volume 842 of Lecture Notes in Computer Science. Springer (1994). https://doi.org/10.1007/BFB0045375

    Article  MATH  Google Scholar 

  16. Pilipczuk, M., Wrochna, M.: On space efficiency of algorithms working on structural decompositions of graphs. ACM Trans. Comput. Theo. 9(4), 18:1–18:36 (2018). https://doi.org/10.1145/3154856

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krisztina Szilágyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bodlaender, H.L., Szilágyi, K. (2025). XNLP-Hardness of Parameterized Problems on Planar Graphs. In: Kráľ, D., Milanič, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2024. Lecture Notes in Computer Science, vol 14760. Springer, Cham. https://doi.org/10.1007/978-3-031-75409-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75409-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75408-1

  • Online ISBN: 978-3-031-75409-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics