Skip to main content

Augmenting Plane Straight-Line Graphs to Meet Parity Constraints

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2024)

Abstract

Given a plane geometric graph G on n vertices, we want to augment it so that given parity constraints of the vertex degrees are met. In other words, given a subset R of the vertices, we are interested in a plane geometric supergraph \(G'\) such that exactly the vertices of R have odd degree in \(G'\setminus G\). We show that the question of whether such a supergraph exists can be decided in polynomial time for two interesting cases. First, when the vertices are in convex position, we present a linear-time algorithm. Building on this insight, we solve the case when G is a plane geometric path in \(O(n \log n)\) time. This solves an open problem posed by Catana, Olaverri, Tejel, and Urrutia (Appl. Math. Comput. 2020).

A.B.G.C. supported by the VILLUM Foundation grant 37507 “Efficient Recomputations for Changeful Problems”. I.P. is a Serra Húnter fellow and acknowledges the support of Independent Research Fund Denmark grant 2020-2023 (9131-00044B) “Dynamic Network Analysis”, the Margarita Salas Fellowship funded by the Ministry of Universities of Spain and the European Union (NextGenerationEU), and grant PID2019-104129GB-I00 funded by MICIU/AEI/10.13039/501100011033. E.R. partially supported by the VILLUM Foundation grant 37507 “Efficient Recomputations for Changeful Problems” and the Independent Research Fund Denmark grant 2020-2023 (9131-00044B) “Dynamic Network Analysis”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abellanas, M., Olaverri, A.G., Hurtado, F., Tejel, J., Urrutia, J.: Augmenting the connectivity of geometric graphs. Comput. Geom. 40(3), 220–230 (2008). https://doi.org/10.1016/j.comgeo.2007.09.001

    Article  MathSciNet  MATH  Google Scholar 

  2. Adriaens, F., Gionis, A.: Diameter minimization by shortcutting with degree constraints. In: Zhu, X., Ranka, S., Thai, M.T., Washio, T., Wu, X. (eds.) Proceedings of the IEEE International Conference on Data Mining (ICDM 2022), pp. 843–848. IEEE (2022). https://doi.org/10.1109/ICDM54844.2022.00095

  3. Aichholzer, O., et al.: Plane graphs with parity constraints. Graphs and Combinatorics 30(1), 47–69 (2012). https://doi.org/10.1007/s00373-012-1247-y

    Article  MathSciNet  MATH  Google Scholar 

  4. Akitaya, H.A., Inkulu, R., Nichols, T.L., Souvaine, D.L., Tóth, C.D., Winston, C.R.: Minimum weight connectivity augmentation for planar straight-line graphs. Theor. Comput. Sci. 789, 50–63 (2019). https://doi.org/10.1016/j.tcs.2018.05.031

    Article  MathSciNet  MATH  Google Scholar 

  5. Al-Jubeh, M., Ishaque, M., Rédei, K., Souvaine, D.L., Tóth, C.D., Valtr, P.: Augmenting the edge connectivity of planar straight line graphs to three. Algorithmica 61(4), 971–999 (2011). https://doi.org/10.1007/s00453-011-9551-0

    Article  MathSciNet  MATH  Google Scholar 

  6. Alon, N., Gyárfás, A., Ruszinkó, M.: Decreasing the diameter of bounded degree graphs. J. Graph Theory 35(3), 161–172 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alvarez, V.: Parity-constrained triangulations with steiner points. Graphs and Combinatorics 31(1), 35–57 (2013). https://doi.org/10.1007/s00373-013-1389-6

    Article  MathSciNet  MATH  Google Scholar 

  8. Benczúr, A.A., Karger, D.R.: Augmenting undirected edge connectivity in \({\tilde{O}}(n^2)\) time. J. Algorithms 37(1), 2–36 (2000). https://doi.org/10.1006/jagm.2000.1093

    Article  MathSciNet  MATH  Google Scholar 

  9. Catana, J.C., Olaverri, A.G., Tejel, J., Urrutia, J.: Plane augmentation of plane graphs to meet parity constraints. Appl. Math. Comput. 386, 125513 (2020). https://doi.org/10.1016/j.amc.2020.125513

    Article  MathSciNet  MATH  Google Scholar 

  10. Cen, R., Li, J., Panigrahi, D.: Augmenting edge connectivity via isolating cuts. In: Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA 2022), pp. 3237–3252. SIAM (2022). https://doi.org/10.1137/1.9781611977073.127

  11. Chazelle, B., et al.: Ray shooting in polygons using geodesic triangulations. Algorithmica 12(1), 54–68 (1994). https://doi.org/10.1007/BF01377183

    Article  MathSciNet  MATH  Google Scholar 

  12. Chung, F.R.K., Garey, M.R.: Diameter bounds for altered graphs. J. Graph Theory 8(4), 511–534 (1984). https://doi.org/10.1002/jgt.3190080408

    Article  MathSciNet  MATH  Google Scholar 

  13. Dabrowski, K.K., Golovach, P.A., van ’t Hof, P., Paulusma, D.: Editing to Eulerian graphs. J. Comput. Syst. Sci. 82(2), 213–228 (2016). https://doi.org/10.1016/j.jcss.2015.10.003

  14. Edmonds, J., Johnson, E.L.: Matching, euler tours and the Chinese postman. Math. Program. 5(1), 88–124 (1973). https://doi.org/10.1007/BF01580113

    Article  MathSciNet  MATH  Google Scholar 

  15. Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Comput. 5(4), 653–665 (1976). https://doi.org/10.1137/0205044

    Article  MathSciNet  MATH  Google Scholar 

  16. Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM J. Discret. Math. 5(1), 25–53 (1992). https://doi.org/10.1137/0405003

    Article  MathSciNet  MATH  Google Scholar 

  17. Frati, F., Gaspers, S., Gudmundsson, J., Mathieson, L.: Augmenting graphs to minimize the diameter. Algorithmica 72(4), 995–1010 (2014). https://doi.org/10.1007/s00453-014-9886-4

    Article  MathSciNet  MATH  Google Scholar 

  18. García, A., Huemer, C., Hurtado, F., Tejel, J.: Compatible spanning trees. Comput. Geom. 47(5), 563–584 (2014). https://doi.org/10.1016/j.comgeo.2013.12.009

    Article  MathSciNet  MATH  Google Scholar 

  19. García, A., et al.: Geometric biplane graphs II: graph augmentation. Graphs and Combinatorics 31(2), 427–452 (2015). https://doi.org/10.1007/s00373-015-1547-0

    Article  MathSciNet  MATH  Google Scholar 

  20. Guibas, L.J., Hershberger, J., Snoeyink, J.: Compact interval trees: a data structure for convex hulls. Int. J. Comput. Geom. Appl. 1(1), 1–22 (1991). https://doi.org/10.1142/S0218195991000025

    Article  MathSciNet  MATH  Google Scholar 

  21. Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput. 4(3), 221–225 (1975). https://doi.org/10.1137/0204019

    Article  MathSciNet  MATH  Google Scholar 

  22. Kant, G., Bodlaender, H.L.: Planar graph augmentation problems. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1991. LNCS, vol. 519, pp. 286–298. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0028270

    Chapter  MATH  Google Scholar 

  23. Kranakis, E., Krizanc, D., Morales-Ponce, O., Stacho, L.: Bounded length, 2-edge augmentation of geometric planar graphs. Discret. Math. Algorithms Appl. 4(3) (2012). https://doi.org/10.1142/S179383091250036X

  24. Kwan, M.K.: Graphic programming using odd or even points. Chinese Math 1, 273–277 (1960)

    MathSciNet  MATH  Google Scholar 

  25. Melkman, A.A.: On-line construction of the convex hull of a simple polyline. Inf. Process. Lett. 25(1), 11–12 (1987). https://doi.org/10.1016/0020-0190(87)90086-X

    Article  MathSciNet  MATH  Google Scholar 

  26. Nash-Williams, C.S.J.A.: On orientations, connectivity and odd-vertex-pairings in finite graphs. Can. J. Math. 12, 555–567 (1960). https://doi.org/10.4153/CJM-1960-049-6

    Article  MathSciNet  MATH  Google Scholar 

  27. Pilz, A., Rollin, J., Schlipf, L., Schulz, A.: Augmenting geometric graphs with matchings. In: Proceedings of the 28th International Symposium on Graph Drawing and Network Visualization (GD 2020). LNCS, vol. 12590, pp. 490–504. Springer (2020). https://doi.org/10.1007/978-3-030-68766-3_38

  28. Plesník, J.: Minimum block containing a given graph. Arch. Math. 27(6), 668–672 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rutter, I., Wolff, A.: Augmenting the connectivity of planar and geometric graphs. J. Graph Algorithms Appl. 16(2), 599–628 (2012). https://doi.org/10.7155/jgaa.00275

    Article  MathSciNet  MATH  Google Scholar 

  30. Tóth, C.D.: Connectivity augmentation in planar straight line graphs. Eur. J. Comb. 33(3), 408–425 (2012). https://doi.org/10.1016/j.ejc.2011.09.002

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Parada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Christiansen, A.B.G., Kleist, L., Parada, I., Rotenberg, E. (2025). Augmenting Plane Straight-Line Graphs to Meet Parity Constraints. In: Kráľ, D., Milanič, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2024. Lecture Notes in Computer Science, vol 14760. Springer, Cham. https://doi.org/10.1007/978-3-031-75409-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75409-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75408-1

  • Online ISBN: 978-3-031-75409-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics