Abstract
Given a plane geometric graph G on n vertices, we want to augment it so that given parity constraints of the vertex degrees are met. In other words, given a subset R of the vertices, we are interested in a plane geometric supergraph \(G'\) such that exactly the vertices of R have odd degree in \(G'\setminus G\). We show that the question of whether such a supergraph exists can be decided in polynomial time for two interesting cases. First, when the vertices are in convex position, we present a linear-time algorithm. Building on this insight, we solve the case when G is a plane geometric path in \(O(n \log n)\) time. This solves an open problem posed by Catana, Olaverri, Tejel, and Urrutia (Appl. Math. Comput. 2020).
A.B.G.C. supported by the VILLUM Foundation grant 37507 “Efficient Recomputations for Changeful Problems”. I.P. is a Serra Húnter fellow and acknowledges the support of Independent Research Fund Denmark grant 2020-2023 (9131-00044B) “Dynamic Network Analysis”, the Margarita Salas Fellowship funded by the Ministry of Universities of Spain and the European Union (NextGenerationEU), and grant PID2019-104129GB-I00 funded by MICIU/AEI/10.13039/501100011033. E.R. partially supported by the VILLUM Foundation grant 37507 “Efficient Recomputations for Changeful Problems” and the Independent Research Fund Denmark grant 2020-2023 (9131-00044B) “Dynamic Network Analysis”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Abellanas, M., Olaverri, A.G., Hurtado, F., Tejel, J., Urrutia, J.: Augmenting the connectivity of geometric graphs. Comput. Geom. 40(3), 220–230 (2008). https://doi.org/10.1016/j.comgeo.2007.09.001
Adriaens, F., Gionis, A.: Diameter minimization by shortcutting with degree constraints. In: Zhu, X., Ranka, S., Thai, M.T., Washio, T., Wu, X. (eds.) Proceedings of the IEEE International Conference on Data Mining (ICDM 2022), pp. 843–848. IEEE (2022). https://doi.org/10.1109/ICDM54844.2022.00095
Aichholzer, O., et al.: Plane graphs with parity constraints. Graphs and Combinatorics 30(1), 47–69 (2012). https://doi.org/10.1007/s00373-012-1247-y
Akitaya, H.A., Inkulu, R., Nichols, T.L., Souvaine, D.L., Tóth, C.D., Winston, C.R.: Minimum weight connectivity augmentation for planar straight-line graphs. Theor. Comput. Sci. 789, 50–63 (2019). https://doi.org/10.1016/j.tcs.2018.05.031
Al-Jubeh, M., Ishaque, M., Rédei, K., Souvaine, D.L., Tóth, C.D., Valtr, P.: Augmenting the edge connectivity of planar straight line graphs to three. Algorithmica 61(4), 971–999 (2011). https://doi.org/10.1007/s00453-011-9551-0
Alon, N., Gyárfás, A., Ruszinkó, M.: Decreasing the diameter of bounded degree graphs. J. Graph Theory 35(3), 161–172 (2000)
Alvarez, V.: Parity-constrained triangulations with steiner points. Graphs and Combinatorics 31(1), 35–57 (2013). https://doi.org/10.1007/s00373-013-1389-6
Benczúr, A.A., Karger, D.R.: Augmenting undirected edge connectivity in \({\tilde{O}}(n^2)\) time. J. Algorithms 37(1), 2–36 (2000). https://doi.org/10.1006/jagm.2000.1093
Catana, J.C., Olaverri, A.G., Tejel, J., Urrutia, J.: Plane augmentation of plane graphs to meet parity constraints. Appl. Math. Comput. 386, 125513 (2020). https://doi.org/10.1016/j.amc.2020.125513
Cen, R., Li, J., Panigrahi, D.: Augmenting edge connectivity via isolating cuts. In: Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA 2022), pp. 3237–3252. SIAM (2022). https://doi.org/10.1137/1.9781611977073.127
Chazelle, B., et al.: Ray shooting in polygons using geodesic triangulations. Algorithmica 12(1), 54–68 (1994). https://doi.org/10.1007/BF01377183
Chung, F.R.K., Garey, M.R.: Diameter bounds for altered graphs. J. Graph Theory 8(4), 511–534 (1984). https://doi.org/10.1002/jgt.3190080408
Dabrowski, K.K., Golovach, P.A., van ’t Hof, P., Paulusma, D.: Editing to Eulerian graphs. J. Comput. Syst. Sci. 82(2), 213–228 (2016). https://doi.org/10.1016/j.jcss.2015.10.003
Edmonds, J., Johnson, E.L.: Matching, euler tours and the Chinese postman. Math. Program. 5(1), 88–124 (1973). https://doi.org/10.1007/BF01580113
Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Comput. 5(4), 653–665 (1976). https://doi.org/10.1137/0205044
Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM J. Discret. Math. 5(1), 25–53 (1992). https://doi.org/10.1137/0405003
Frati, F., Gaspers, S., Gudmundsson, J., Mathieson, L.: Augmenting graphs to minimize the diameter. Algorithmica 72(4), 995–1010 (2014). https://doi.org/10.1007/s00453-014-9886-4
García, A., Huemer, C., Hurtado, F., Tejel, J.: Compatible spanning trees. Comput. Geom. 47(5), 563–584 (2014). https://doi.org/10.1016/j.comgeo.2013.12.009
García, A., et al.: Geometric biplane graphs II: graph augmentation. Graphs and Combinatorics 31(2), 427–452 (2015). https://doi.org/10.1007/s00373-015-1547-0
Guibas, L.J., Hershberger, J., Snoeyink, J.: Compact interval trees: a data structure for convex hulls. Int. J. Comput. Geom. Appl. 1(1), 1–22 (1991). https://doi.org/10.1142/S0218195991000025
Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput. 4(3), 221–225 (1975). https://doi.org/10.1137/0204019
Kant, G., Bodlaender, H.L.: Planar graph augmentation problems. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1991. LNCS, vol. 519, pp. 286–298. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0028270
Kranakis, E., Krizanc, D., Morales-Ponce, O., Stacho, L.: Bounded length, 2-edge augmentation of geometric planar graphs. Discret. Math. Algorithms Appl. 4(3) (2012). https://doi.org/10.1142/S179383091250036X
Kwan, M.K.: Graphic programming using odd or even points. Chinese Math 1, 273–277 (1960)
Melkman, A.A.: On-line construction of the convex hull of a simple polyline. Inf. Process. Lett. 25(1), 11–12 (1987). https://doi.org/10.1016/0020-0190(87)90086-X
Nash-Williams, C.S.J.A.: On orientations, connectivity and odd-vertex-pairings in finite graphs. Can. J. Math. 12, 555–567 (1960). https://doi.org/10.4153/CJM-1960-049-6
Pilz, A., Rollin, J., Schlipf, L., Schulz, A.: Augmenting geometric graphs with matchings. In: Proceedings of the 28th International Symposium on Graph Drawing and Network Visualization (GD 2020). LNCS, vol. 12590, pp. 490–504. Springer (2020). https://doi.org/10.1007/978-3-030-68766-3_38
Plesník, J.: Minimum block containing a given graph. Arch. Math. 27(6), 668–672 (1976)
Rutter, I., Wolff, A.: Augmenting the connectivity of planar and geometric graphs. J. Graph Algorithms Appl. 16(2), 599–628 (2012). https://doi.org/10.7155/jgaa.00275
Tóth, C.D.: Connectivity augmentation in planar straight line graphs. Eur. J. Comb. 33(3), 408–425 (2012). https://doi.org/10.1016/j.ejc.2011.09.002
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Christiansen, A.B.G., Kleist, L., Parada, I., Rotenberg, E. (2025). Augmenting Plane Straight-Line Graphs to Meet Parity Constraints. In: Kráľ, D., Milanič, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2024. Lecture Notes in Computer Science, vol 14760. Springer, Cham. https://doi.org/10.1007/978-3-031-75409-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-75409-8_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75408-1
Online ISBN: 978-3-031-75409-8
eBook Packages: Computer ScienceComputer Science (R0)