Skip to main content

On SMC-Based Dependability Analysis in LoLiPoP-IoT Project

  • Conference paper
  • First Online:
Bridging the Gap Between AI and Reality (AISoLA 2024)

Abstract

Many systems require certain level of dependability to fulfill their purpose in predefined conditions. To check whether such a requirement can be met, the designer of a system must use proper means to assess dependability qualitatively or quantitatively, whereas this paper focuses on the latter assessment manner. The first problem with the assessment is that we cannot judge it except by evaluating its sub-attributes such as reliability, availability or maintainability. The second problem relates to the assessment itself – ideally, assessment builds on an analytical solution; however, if it does not exist, its presumptions are violated etc., an alternative approach must take place. This paper presents our alternative, simulation based approach with a special attention paid to reliability and maintainability; it builds on stochastic timed automata, an instrument able to model a wide class of systems/conditions of one’s interest. In our approach, the assessment process takes the advantage of the statistical model checking technique, powerful enough to quantify dependability attributes in realistic situations and with a predefined degree of uncertainty. Finally,the paper evaluates our approach, outlines our research perspectives and gives a conclusion.

This work was supported by the Chips JU Project LoLiPoP-IoT (Long Life Power Platforms for Internet of Things),www.lolipop-iot.eu, grant agreement No. 101112286, which is jointly funded by the Chips Joint Undertaking and national public authorities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abate, A., Budde, C.E., Cauchi, N., van Harmelen, A., Hoque, K.A., Stoelinga, M.: Modelling smart buildings using fault maintenance trees. In: Bakhshi, R., Ballarini, P., Barbot, B., Castel-Taleb, H., Remke, A. (eds.) Computer Performance Engineering, pp. 110–125. Springer International Publishing, Cham (2018)

    Google Scholar 

  2. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model. Comput. Simul. (TOMACS) 28(1), 6:1–6:39 (2018). https://doi.org/10.1145/3158668

  3. Alur, R., Dill, D.: The theory of timed automata. In: Real-Time: Theory in Practice, pp. 45–73. Springer, Berlin, Heidelberg (1992). https://doi.org/10.1016/0304-3975(94)90010-8

  4. Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33 (2004). https://doi.org/10.1109/TDSC.2004.2

    Article  MATH  Google Scholar 

  5. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Representation and Mind (2008)

    MATH  Google Scholar 

  6. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9_7

  7. Bowles, J.B.: Commentary - caution: constant failure-rate models may be hazardous to your design. IEEE Trans. Reliab. 51(3), 375–377 (2002). https://doi.org/10.1109/TR.2002.801850

  8. Calinescu, R., Ghezzi, C., Johnson, K., Pezz, M., Rafiq, Y., Tamburrelli, G.: Formal verification with confidence intervals to establish quality of service properties of software systems. IEEE Trans. Reliab. 65(1), 107–125 (2016). https://doi.org/10.1109/TR.2015.2452931

    Article  MATH  Google Scholar 

  9. Calinescu, R., Ghezzi, C., Johnson, K., Pezze, M., Rafiq, Y., Tamburrelli, G.: Formal verification with confidence intervals to establish quality of service properties of software systems. IEEE Trans. Reliab. PP(99), 1–19 (2015). https://doi.org/10.1109/TR.2015.2452931

  10. Cinar, Z.M., Nuhu, A.A., Zeeshan, Q., Korhan, O., Asmael, M.B.A., Safaei, B.: Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability 12(19), 8211 (2020). https://api.semanticscholar.org/CorpusID:225160331

  11. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model Checking. Springer International Publishing, Cham, 1st edn. (2018). https://doi.org/10.1007/978-3-319-10575-8

  12. van Dalen, D.: Logic and Structure. Universitext, Springer Verlag, London, 5th edn. (2013). https://doi.org/10.1007/978-1-4471-4558-5

  13. David, A., Larsen, K., Legay, A., Mikučionis, M., Poulsen, D.: Uppaal SMC Tutorial. Int. J. Software Tools Technol. Transf. 17(4), 397–415 (2015). https://doi.org/10.1007/s10009-014-0361-y

  14. Devooght, J.: Dynamic reliability. Adv. Nucl. Sci. Technol. 25, 215–278 (1997). https://doi.org/10.1007/0-306-47812-9_7

  15. Durga Rao, K., Gopika, V., Sanyasi Rao, V., Kushwaha, H., Verma, A., Srividya, A.: Dynamic fault tree analysis using monte carlo simulation in probabilistic safety assessment. Reliab. Eng. Syst. Saf. 94(4), 872–883 (2009). https://doi.org/10.1016/j.ress.2008.09.007

  16. Geffroy, J.C., Motet, G.: Design of Dependable Computing Systems. Kluwer Academic Publishers, Hingham, MA, USA (2002)

    Book  MATH  Google Scholar 

  17. Hartmanns, A., Hermanns, H.: In the quantitative automata ZOO. Sci. Comput. Program. 112, 3–23 (2015). https://doi.org/10.1016/j.scico.2015.08.009

    Article  MATH  Google Scholar 

  18. Jegourel, C., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., Sedwards, S.: Importance sampling for stochastic timed automata. In: Fränzle, M., Kapur, D., Zhan, N. (eds.) SETTA 2016. LNCS, vol. 9984, pp. 163–178. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47677-3_11

    Chapter  Google Scholar 

  19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic model checking for performance and reliability analysis. SIGMETRICS Perform. Eval. Rev. 36(4), 40–45 (2009). https://doi.org/10.1145/1530873.1530882

  20. Larsen, K.G., Legay, A.: Statistical model checking past, present, and future. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and Validation. Specialized Techniques and Applications, pp. 135–142. Springer Berlin Heidelberg, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8_10

  21. Larsen, K., Legay, A., Mikučionis, M., Poulsen, D.: Importance splitting in Uppaal. In: Proceedings 11th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA), pp. 433–447. LNCS, Physica-Verlag (2022). https://doi.org/10.1007/978-3-031-19759-8_26

  22. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In: Barringer, H., et al. (eds.) Runtime Verification, pp. 122–135. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-16612-9_11

  23. Liu, Y., Ren, Y., Liu, L., Li, Z.: A spark-based parallel simulation approach for repairable system. vol. 2016-April (2016). https://doi.org/10.1109/RAMS.2016.7447965

  24. Lu, Y., Miller, A.A., Hoffmann, R., Johnson, C.W.: Towards the automated verification of weibull distributions for system failure rates, pp. 81–96. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45943-1_6

  25. Lu, Y., Peng, Z., Miller, A.A., Zhao, T., Johnson, C.W.: How reliable is satellite navigation for aviation? Checking availability properties with probabilistic verification. Reliab. Eng. Syst. Saf. 144, 95 – 116 (2015). https://doi.org/10.1016/j.ress.2015.07.020

  26. Nekoukhou, V., Bidram, H.: A new generalization of the weibull-geometric distribution with bathtub failure rate. Commun. Stat. - Theory Methods 46(9), 4296–4310 (2017). https://doi.org/10.1080/03610926.2015.1081949

    Article  MathSciNet  MATH  Google Scholar 

  27. Njor, E., Madsen, J., Fafoutis, X.: A primer for tinyML predictive maintenance: input and model optimisation. In: Artificial Intelligence Applications and Innovations, pp. 67–78. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-08337-2_6

  28. Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., Loncarski, J.: Machine learning approach for predictive maintenance in industry 4.0. In: 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), pp. 1–6 (2018). https://doi.org/10.1109/MESA.2018.8449150

  29. Peng, Z., Lu, Y., Miller, A., Johnson, C., Zhao, T.: A probabilistic model checking approach to analysing reliability, availability, and maintainability of a single satellite system. In: Modelling Symposium (EMS), 2013 European, pp. 611–616 (Nov 2013). https://doi.org/10.1109/EMS.2013.102

  30. Butler, R.W., Johnson, S.C.: Techniques for Modeling the Reliability of Fault-Tolerant Systems With the Markov State-Space Approach. Tech. rep. (1995). http://shemesh.larc.nasa.gov/fm/papers/Butler-RP-1348-Techniques-Model_Rel-FT.pdf

  31. Ruijters, E., Guck, D., Drolenga, P., Stoelinga, M.: Fault maintenance trees: reliability centered maintenance via statistical model checking. In: 2016 Annual Reliability and Maintainability Symposium (RAMS), pp. 1–6 (2016). https://doi.org/10.1109/RAMS.2016.7447986

  32. Smrz, P., et al.: LoLiPoP IoT (Long Life Power Platforms for Internet of Things), Part B for Grant Agreement (June 2023). https://doi.org/10.3030/101112286, https://www.lolipop-iot.eu/

  33. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree Handbook. NUREG, Washington, US (1981). https://archive.org/details/nureg-0492-ml100780465/NUREG-0492_ML100780465/, id: NUREG-0492

  34. Xing, L., Amari, S.V.: Fault Tree Analysis, pp. 595–620. Springer London, London (2008)https://doi.org/10.1007/978-1-84800-131-2_38

  35. Zhang, T., Dwight, R., El-Akruti, K.: On a weibull related distribution model with decreasing, increasing and upside-down bathtub-shaped failure rate. In: 2013 Proceedings Annual Reliability and Maintainability Symposium (RAMS), pp. 1–6 (2013). https://doi.org/10.1109/RAMS.2013.6517749

  36. Zhu, P., Han, J., Liu, L., Lombardi, F.: Reliability evaluation of phased-mission systems using stochastic computation. IEEE Trans. Reliab. 65(3), 1612–1623 (2016). https://doi.org/10.1109/TR.2016.2570565

    Article  MATH  Google Scholar 

  37. Zhu, P., Han, J., Liu, L., Zuo, M.: A stochastic approach for the analysis of fault trees with priority and gates. IEEE Trans. Reliab. 63(2), 480–494 (2014). https://doi.org/10.1109/TR.2014.2313796

    Article  MATH  Google Scholar 

  38. Zhu, T., Ran, Y., Zhou, X., Wen, Y.: A survey of predictive maintenance: systems, purposes and approaches. arXiv e-prints arXiv:1912.07383 (Dec 2019). https://doi.org/10.48550/arXiv.1912.07383

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Strnadel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Strnadel, J., Lojda, J., Smrž, P., Šimek, V. (2025). On SMC-Based Dependability Analysis in LoLiPoP-IoT Project. In: Steffen, B. (eds) Bridging the Gap Between AI and Reality. AISoLA 2024. Lecture Notes in Computer Science, vol 15217. Springer, Cham. https://doi.org/10.1007/978-3-031-75434-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75434-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75433-3

  • Online ISBN: 978-3-031-75434-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics