Abstract
This paper explores the use of machine learning methodologies, specifically Gradient Boosting Regressor (GBR) and Long Short-Term Memory (LSTM) networks, to forecast water levels at the Lago de Chapala Dam. The research highlights the importance of integrating a 1-day lag feature to provide temporal context, significantly enhancing model performance. Analyzing daily records from 1991 to 2024, including variables like precipitation, evaporation, and temperature, the research shows that models with the 1-day lag feature achieved markedly better accuracy. The GBR model’s testing RMSE decreased from 886.37 to 32.49, and the LSTM model’s RMSE dropped from 957.689 to 67.474 with the lag feature, along with substantial improvements in \(\hbox {R}^{2}\) values. These findings highlight the critical role of temporal dependencies in hydrological predictions, demonstrating the potential for integrating machine learning models into water resource management to improve prediction accuracy and ensure sustainable water supply and disaster readiness. The study aims to develop and validate predictive models, evaluate their accuracy and reliability, and provide insights for integrating these models into water management practices at Lago de Chapala.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Obringer, R., Nateghi, R.: Predicting urban reservoir levels using statistical learning techniques. Sci. Rep. 8(1), 5164 (2018). https://doi.org/10.1038/s41598-018-23509-w
CEA Jalisco. https://www.ceajalisco.gob.mx/contenido/chapala/lago. Accessed 14 June 2024
Han, H., Kim, D., Wang, W., Kim, H.S.: Dam inflow prediction using large-scale climate variability and deep learning approach: a case study in South Korea. Water Supply 23(2), 934–948 (2023). https://doi.org/10.2166/ws.2023.012
Ahmed, K., Shahid, S., Chung, E.S., Wang, X.-J.: Machine learning methods for better water resources predictions and management. Water 11(6), 1233 (2019). https://doi.org/10.3390/w11061233
Feng, Q., Liu, D., Dong, J.: Ensemble learning approach for hydrological time series prediction: an application to water level forecasting. Environmental Model. Softw. 123, 104566 (2020). https://doi.org/10.1016/j.envsoft.2019.104566
Tian, Y., Zhang, X., Wang, Y., Li, X.: Water level prediction using LSTM networks: a case study of the Yangtze River. J. Hydrol. 602, 126769 (2022). https://doi.org/10.1016/j.jhydrol.2021.126769
Sajedi-Hosseini, F., Araghinejad, S., Moradkhani, H.: Application of hybrid machine learning methods in hydrological forecasting: a case study of the Great Lakes. J. Hydrol. 565, 852–867 (2018). https://doi.org/10.1016/j.jhydrol.2018.09.062
Kang, H., Lee, J., Cho, Y.: Prediction of water levels in the Han River using gradient boosting machine. Water 13(7), 940 (2021). https://doi.org/10.3390/w13070940
World Bank: Data Data Everywhere: New World Bank Water Data Portal. World Bank (2020). https://www.worldbank.org/en/news/feature/2020/10/26/data-data-everywhere-new-world-bank-water-data-portal. Accessed 15 June 2024
Rodriguez, J.P., Martinez, R., Gonzalez, M.A.: Predicting water levels in the Rio Bravo using LSTM networks. Hydrol. Sci. J. 66(8), 1209–1219 (2021). https://doi.org/10.1080/02626667.2021.1940347
National Water Commission of Mexico (CONAGUA): Climatic Normals by State (Jalisco, Lake Chapala station). Retrieved from https://smn.conagua.gob.mx/es/informacion-climatologica-por-estado?estado=jal . Accessed 16 June 2024
Government of Jalisco: Water Level of Lake Chapala. Retrieved from https://datos.jalisco.gob.mx/dataset/registro-de-niveles-de-agua-en-la-presa-lago-de-chapala-jalisco. Accessed 16 June 2024
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009). https://doi.org/10.1145/1541880.1541882
Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques, 3rd edn. Elsevier, Amsterdam (2011)
Brownlee, J.: Introduction to Time Series Forecasting with Python. Machine Learning Mastery (2017)
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001). https://doi.org/10.1214/aos/1013203451
Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)
Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30(1), 79–82 (2005)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
Wang, X., Zhang, Z., Ren, J., Guo, S.: Application of min-max normalization and genetic algorithm in BP neural network for rainfall prediction. Comput. Intell. Neurosci. 2017(9206207), 1 (2017). https://doi.org/10.1155/2017/9206207
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30(1), 79–82 (2005)
Wooldridge, J.M.: Introductory Econometrics: A Modern Approach, 6th edn. Cengage Learning (2016)
Acknowledgments
The authors would like to thank the financial support from Tecnologico de Monterrey through the “Challenge-Based Research Funding Program 2022”. Project ID # E120 - EIC-GI06 - B-T3 - D.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
López-Barrios, J.D., de Anda-García, I.K., Jimenez-Cruz, R., Trejo, L.A., Ochoa-Ruiz, G., Gonzalez-Mendoza, M. (2025). Predicting Water Levels Using Gradient Boosting Regressor and LSTM Models: A Case Study of Lago de Chapala Dam. In: Martínez-Villaseñor, L., Ochoa-Ruiz, G. (eds) Advances in Computational Intelligence. MICAI 2024. Lecture Notes in Computer Science(), vol 15246. Springer, Cham. https://doi.org/10.1007/978-3-031-75540-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-75540-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75539-2
Online ISBN: 978-3-031-75540-8
eBook Packages: Computer ScienceComputer Science (R0)