Skip to main content

Predicting Water Levels Using Gradient Boosting Regressor and LSTM Models: A Case Study of Lago de Chapala Dam

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2024)

Abstract

This paper explores the use of machine learning methodologies, specifically Gradient Boosting Regressor (GBR) and Long Short-Term Memory (LSTM) networks, to forecast water levels at the Lago de Chapala Dam. The research highlights the importance of integrating a 1-day lag feature to provide temporal context, significantly enhancing model performance. Analyzing daily records from 1991 to 2024, including variables like precipitation, evaporation, and temperature, the research shows that models with the 1-day lag feature achieved markedly better accuracy. The GBR model’s testing RMSE decreased from 886.37 to 32.49, and the LSTM model’s RMSE dropped from 957.689 to 67.474 with the lag feature, along with substantial improvements in \(\hbox {R}^{2}\) values. These findings highlight the critical role of temporal dependencies in hydrological predictions, demonstrating the potential for integrating machine learning models into water resource management to improve prediction accuracy and ensure sustainable water supply and disaster readiness. The study aims to develop and validate predictive models, evaluate their accuracy and reliability, and provide insights for integrating these models into water management practices at Lago de Chapala.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Obringer, R., Nateghi, R.: Predicting urban reservoir levels using statistical learning techniques. Sci. Rep. 8(1), 5164 (2018). https://doi.org/10.1038/s41598-018-23509-w

    Article  Google Scholar 

  2. CEA Jalisco. https://www.ceajalisco.gob.mx/contenido/chapala/lago. Accessed 14 June 2024

  3. Han, H., Kim, D., Wang, W., Kim, H.S.: Dam inflow prediction using large-scale climate variability and deep learning approach: a case study in South Korea. Water Supply 23(2), 934–948 (2023). https://doi.org/10.2166/ws.2023.012

    Article  Google Scholar 

  4. Ahmed, K., Shahid, S., Chung, E.S., Wang, X.-J.: Machine learning methods for better water resources predictions and management. Water 11(6), 1233 (2019). https://doi.org/10.3390/w11061233

    Article  Google Scholar 

  5. Feng, Q., Liu, D., Dong, J.: Ensemble learning approach for hydrological time series prediction: an application to water level forecasting. Environmental Model. Softw. 123, 104566 (2020). https://doi.org/10.1016/j.envsoft.2019.104566

    Article  Google Scholar 

  6. Tian, Y., Zhang, X., Wang, Y., Li, X.: Water level prediction using LSTM networks: a case study of the Yangtze River. J. Hydrol. 602, 126769 (2022). https://doi.org/10.1016/j.jhydrol.2021.126769

    Article  Google Scholar 

  7. Sajedi-Hosseini, F., Araghinejad, S., Moradkhani, H.: Application of hybrid machine learning methods in hydrological forecasting: a case study of the Great Lakes. J. Hydrol. 565, 852–867 (2018). https://doi.org/10.1016/j.jhydrol.2018.09.062

    Article  Google Scholar 

  8. Kang, H., Lee, J., Cho, Y.: Prediction of water levels in the Han River using gradient boosting machine. Water 13(7), 940 (2021). https://doi.org/10.3390/w13070940

    Article  Google Scholar 

  9. World Bank: Data Data Everywhere: New World Bank Water Data Portal. World Bank (2020). https://www.worldbank.org/en/news/feature/2020/10/26/data-data-everywhere-new-world-bank-water-data-portal. Accessed 15 June 2024

  10. Rodriguez, J.P., Martinez, R., Gonzalez, M.A.: Predicting water levels in the Rio Bravo using LSTM networks. Hydrol. Sci. J. 66(8), 1209–1219 (2021). https://doi.org/10.1080/02626667.2021.1940347

    Article  Google Scholar 

  11. National Water Commission of Mexico (CONAGUA): Climatic Normals by State (Jalisco, Lake Chapala station). Retrieved from https://smn.conagua.gob.mx/es/informacion-climatologica-por-estado?estado=jal . Accessed 16 June 2024

  12. Government of Jalisco: Water Level of Lake Chapala. Retrieved from https://datos.jalisco.gob.mx/dataset/registro-de-niveles-de-agua-en-la-presa-lago-de-chapala-jalisco. Accessed 16 June 2024

  13. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009). https://doi.org/10.1145/1541880.1541882

    Article  Google Scholar 

  14. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques, 3rd edn. Elsevier, Amsterdam (2011)

    Google Scholar 

  15. Brownlee, J.: Introduction to Time Series Forecasting with Python. Machine Learning Mastery (2017)

    Google Scholar 

  16. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001). https://doi.org/10.1214/aos/1013203451

    Article  MathSciNet  Google Scholar 

  17. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  Google Scholar 

  18. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30(1), 79–82 (2005)

    Article  Google Scholar 

  19. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  20. Wang, X., Zhang, Z., Ren, J., Guo, S.: Application of min-max normalization and genetic algorithm in BP neural network for rainfall prediction. Comput. Intell. Neurosci. 2017(9206207), 1 (2017). https://doi.org/10.1155/2017/9206207

    Article  Google Scholar 

  21. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  Google Scholar 

  22. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30(1), 79–82 (2005)

    Article  Google Scholar 

  23. Wooldridge, J.M.: Introductory Econometrics: A Modern Approach, 6th edn. Cengage Learning (2016)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support from Tecnologico de Monterrey through the “Challenge-Based Research Funding Program 2022”. Project ID # E120 - EIC-GI06 - B-T3 - D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Gonzalez-Mendoza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López-Barrios, J.D., de Anda-García, I.K., Jimenez-Cruz, R., Trejo, L.A., Ochoa-Ruiz, G., Gonzalez-Mendoza, M. (2025). Predicting Water Levels Using Gradient Boosting Regressor and LSTM Models: A Case Study of Lago de Chapala Dam. In: Martínez-Villaseñor, L., Ochoa-Ruiz, G. (eds) Advances in Computational Intelligence. MICAI 2024. Lecture Notes in Computer Science(), vol 15246. Springer, Cham. https://doi.org/10.1007/978-3-031-75540-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75540-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75539-2

  • Online ISBN: 978-3-031-75540-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics