Skip to main content

Identification of Diabetic Retinopathy from Retinography Images Using a Convolutional Neural Network

  • Conference paper
  • First Online:
Technologies and Innovation (CITI 2024)

Abstract

Diabetic retinopathy (DR) is a prevalent eye disease in people with diabetes worldwide and can cause vision loss or blindness. Conventional diagnostic imaging requires time, effort and specific skills of ophthalmologists. This study proposes the use of a convolutional neural network (CNN) based on the ResNet152V2 architecture to automatically analyze color images of the retina of the eye and identify DR. The Knowledge Discovery in Databases (KDD) methodology was applied for data management and analysis. Datasets of RGB images were acquired, both private from the Ecuadorian Diabetes Association (EDA) and public (EyePACS) available on the Internet. Training and validation of the model were performed with Python, the TensorFlow framework and the Keras library. The results showed that the model has an accuracy in DR identification of 80% comparable to that of ophthalmologists (specialists), showing a statistically significant association according to the chi-square test and a very high Spearman correlation (rho = 0.857). This resulted in a high concordance between both evaluations (model vs. specialists). In addition, the CNN model significantly reduced the manual DR diagnosis time from 5–10 min to 15–30 s. The implementation of this tool could potentially improve the diagnosis of DR and the prescription of appropriate clinical treatments for affected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguagallo, L., Salazar-Fierro, F., García-Santillán, J., Posso-Yépez, M., Landeta-López, P., García-Santillán, I.: Analysis of student performance applying data mining techniques in a virtual learning environment. Int. J. Emerg. Technol. Learn. (iJET) 18(11), pp. 175–195 (Jun 2023). https://doi.org/10.3991/ijet.v18i11.37309, https://online-journals.org/index.php/i-jet/article/view/37309

  2. Alyoubi, W.L., Shalash, W.M., Abulkhair, M.F.: Diabetic retinopathy detection through deep learning techniques: a review. Inform. Med. Unlocked 20 (2020). https://doi.org/10.1016/j.imu.2020.100377. (cited by: 249; All Open Access, Gold Open Access)

  3. Bravo, J.D., Correa, A., Bravo, A., Bravo, R., Villada, O.A.: Retinopatía diabética y edema macular diabético en población de Antioquia. Iatreia 35(2), 98–107 (Feb 2022). https://doi.org/10.17533/udea.iatreia.125

  4. Chacua, B., et al.: People identification through facial recognition using deep learning. In: 2019 IEEE Latin American Conference on Computational Intelligence (LA-CCI), pp. 1–6 (2019). https://doi.org/10.1109/LA-CCI47412.2019.9037043

  5. Cheloni, R., Gandolfi, S.A., Signorelli, C., Odone, A.: Global prevalence of diabetic retinopathy: protocol for a systematic review and meta-analysis. BMJ Open 9(3), e022188 (Feb 2019).https://doi.org/10.1136/bmjopen-2018-022188

  6. da Conceição Nunes, H., Guimarães, R.M.C., Dadalto, L.: Desafíos bioéticos del uso de la inteligencia artificial en los hospitales. Revista Bioética 30(1), 82–93 (Feb 2022). https://doi.org/10.1590/1983-80422022301509es

  7. Durga, B.K., Rajesh, V.: A ResNet deep learning based facial recognition design for future multimedia applications. Comput. Electric. Eng. 104, 108384 (Feb 2022). https://doi.org/10.1016/j.compeleceng.2022.108384

  8. Emma, D., Jared, J., Will, C.: Diabetic Retinopathy Detection: Dataset. Kaggle (2015). https://www.kaggle.com/c/diabetic-retinopathy-detection/data

  9. Farag, M.M., Fouad, M., Abdel-Hamid, A.T.: Automatic severity classification of diabetic retinopathy based on DenseNet and convolutional block attention module. IEEE Access 10, 38299–38308 (2022). https://doi.org/10.1109/ACCESS.2022.3165193

    Article  Google Scholar 

  10. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Commun. ACM 39(11), 27–34 (1996). https://doi.org/10.1145/240455.240464

    Article  Google Scholar 

  11. Gartika, N., Mustopa, A., Hidayat, Y.: The relationship of self-efficacy with adherence in restricting fluid intake in middle adult hemodialysis patients. J. Phys. Conf. Ser. 1764(1), 12006 (Feb 2021).https://doi.org/10.1088/1742-6596/1764/1/012006

  12. Gómez-Valverde, J.J., et al.: Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomed. Opt. Express 10(2), 892 (Feb 2019). https://doi.org/10.1364/BOE.10.000892

  13. Hamzah Abed, M., Muhammed, L.A.N., Toman, S.H.: Diabetic retinopathy diagnosis based on convolutional neural network. J. Phys. Conf. Ser. 1999(1), 12117 (Feb 2021). https://doi.org/10.1088/1742-6596/1999/1/012117

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE (Feb 2016). https://doi.org/10.1109/CVPR.2016.90

  15. Herrera-Granda, I.D., et al.: Artificial neural networks for bottled water demand forecasting: a small business case study. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS, vol. 11507, pp. 362–373. Springer Verlag (2019). https://doi.org/10.1007/978-3-030-20518-8_31

  16. Howard, A.G., et al.: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (2017). https://doi.org/10.48550/arXiv.1704.04861

  17. Huang, G., Liu, Z., Maaten, L.V.D., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269. IEEE (Feb 2017). https://doi.org/10.1109/CVPR.2017.243

  18. Ibáñez-bruron, M., Cruzat, A., Órdenes-Cavieres, G., Coria, M.: Exactitud de tamizaje de retinopatía diabética: inteligencia artificial versus tecnólogos médicos entrenados. Revista médica de Chile 149(4), 493–500 (Feb 2021). https://doi.org/10.4067/s0034-98872021000400493

  19. IDF: International Diabetes Federation (2023). https://idf.org/our-network/regions-and-members/south-and-central-america/members/ecuador/federacion-ecuatoriana-de-diabetes/

  20. Jiwani, N., Gupta, K., Afreen, N.: A convolutional neural network approach for diabetic retinopathy classification. In: 2022 IEEE 11th International Conference on Communication Systems and Network Technologies (CSNT), pp. 357–361. IEEE (Feb 2022). https://doi.org/10.1109/CSNT54456.2022.9787577

  21. Juma, A., Rodríguez, J., Caraguay, J., Naranjo, M., Quiña-Mera, A., García-Santillán, I.: Integration and evaluation of social networks in virtual learning environments: a case study. In: Botto-Tobar, M., et al. (eds.) Technology Trends, pp. 245–258. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-05532-5_18

  22. Lind, D., Marchal, W., Wathen, S.: Statistical Techniques in Business and Economics, 18\(^\circ \) edn. McGraw-Hill Education, New York (2020)

    Google Scholar 

  23. Lu, L., Zou, G., Chen, L., Lu, Q., Wu, M., Li, C.: Elevated NLRP3 inflammasome levels correlate with vitamin D in the vitreous of proliferative diabetic retinopathy. Front. Med. 8 (Feb 2021). https://doi.org/10.3389/fmed.2021.736316

  24. Maison, Lestari, T., Luthfi, A.: Retinal blood vessel segmentation using Gaussian Filter. J. Phys. Conf. Ser. 1376(1), 12023 (Feb 2019). https://doi.org/10.1088/1742-6596/1376/1/012023

  25. Montenegro, S., Pusdá-Chulde, M., Caranqui-Sánchez, V., Herrera-Tapia, J., Ortega-Bustamante, C., García-Santillán, I.: Android mobile application for cattle body condition score using convolutional neural networks. In: Narváez, F.R., Urgilés, F., Bastos-Filho, T.F., Salgado-Guerrero, J.P. (eds.) Smart Technologies, Systems and Applications, pp. 91–105. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-32213-6_7

  26. Mushtaq, G., Siddiqui, F.: Detection of diabetic retinopathy using deep learning methodology. IOP Conf. Ser. Mater. Sci. Eng. 1070(1), 12049 (Feb 2021). https://doi.org/10.1088/1757-899X/1070/1/012049

  27. Oladele, T.O., Ogundokun, R.O., Kayode, A.A., Adegun, A.A., Adebiyi, M.O.: Application of Data Mining Algorithms for Feature Selection and Prediction of Diabetic Retinopathy, pp. 716–730 (2019). https://doi.org/10.1007/978-3-030-24308-1_56

  28. Pusdá-Chulde, M.R., Salazar-Fierro, F.A., Sandoval-Pillajo, L., Herrera-Granda, E.P., García-Santillán, I.D., De Giusti, A.: Image Analysis Based on Heterogeneous Architectures for Precision Agriculture: A Systematic Literature Review, pp. 51–70 (2020). https://doi.org/10.1007/978-3-030-33614-1_4

  29. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, pp. 234–241. Springer International Publishing, Cham (2015)

    Google Scholar 

  30. Sallam, M.S., Asnawi, A.L., Olanrewaju, R.F.: Diabetic retinopathy grading using ResNet convolutional neural network. In: 2020 IEEE Conference on Big Data and Analytics (ICBDA), pp. 73–78. IEEE (Feb 2020). https://doi.org/10.1109/ICBDA50157.2020.9289822

  31. Shanthini, A., Manogaran, G., Vadivu, G., Kottilingam, K., Nithyakani, P., Fancy, C.: Threshold segmentation based multi-layer analysis for detecting diabetic retinopathy using convolution neural network. J. Ambient Intell. Humaniz. Comput. (Feb 2021). https://doi.org/10.1007/s12652-021-02923-5

  32. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9. IEEE (Feb 2015). https://doi.org/10.1109/CVPR.2015.7298594

  33. Tácuna-Calderón, A., Moncada-Mapelli, E., Lens-Sardón, L., Huaccho-Rojas, J., Gamarra-Castillo, F., Salazar-Granara, A.: Estrategias de la Organización Mundial de la Salud en Medicina Tradicional y Reconocimiento de Sistemas de Medicina Tradicional. Revista del Cuerpo Médico del HNAAA 13(1), 101–102 (Feb 2020). https://doi.org/10.35434/rcmhnaaa.2020.131.633

  34. Tan, M., Le, Q.V.: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks (2020). https://doi.org/10.48550/arXiv.1905.11946

  35. Tan, T., et al.: Retinal neural dysfunction in diabetes revealed with handheld chromatic pupillometry. Clin. Exp. Ophthalmol. 50(7), 745–756 (Feb 2022). https://doi.org/10.1111/ceo.14116

  36. Tirado-Bou, A., Marín-Prades, R., Baiguera-Tambutti, L., Sanz, P.J., Martí, J.V.: Desarrollo de una interfaz para el prototipado y validación de un robot móvil autónomo de uso hospitalario. In: XLIII Jornadas de Automática: libro de actas: 7, 8 y 9 de septiembre de 2022, Logroño (La Rioja), pp. 156–164. Servizo de Publicacións da UDC (Feb 2022). https://doi.org/10.17979/spudc.9788497498418.0156

  37. Yudhana, A., Akbar, S.A., Farezi, A., Ghazali, K.H., Nuraisyah, F., Rosyady, P.A.: Glucose content analysis using image processing and machine learning techniques. In: 2022 5th International Conference on Information and Communications Technology (ICOIACT), pp. 513–516. IEEE (Feb 2022). https://doi.org/10.1109/ICOIACT55506.2022.9972142

Download references

Acknowledgments

We thank the Ecuadorian Diabetes Association for providing the retinal images of the eye and its specialists for making the visual diagnoses of Diabetic Retinopathy, which were of great support for the development of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván García-Santillán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ulloa, F., Sandoval-Pillajo, L., Landeta-López, P., Granda-Peñafiel, N., Pusdá-Chulde, M., García-Santillán, I. (2025). Identification of Diabetic Retinopathy from Retinography Images Using a Convolutional Neural Network. In: Valencia-García, R., Borodulina, T., Del Cioppo-Morstadt, J., Moran-Castro, C.E., Vera-Lucio, N. (eds) Technologies and Innovation. CITI 2024. Communications in Computer and Information Science, vol 2276. Springer, Cham. https://doi.org/10.1007/978-3-031-75702-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75702-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75701-3

  • Online ISBN: 978-3-031-75702-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics