Abstract
Diabetic retinopathy (DR) is a prevalent eye disease in people with diabetes worldwide and can cause vision loss or blindness. Conventional diagnostic imaging requires time, effort and specific skills of ophthalmologists. This study proposes the use of a convolutional neural network (CNN) based on the ResNet152V2 architecture to automatically analyze color images of the retina of the eye and identify DR. The Knowledge Discovery in Databases (KDD) methodology was applied for data management and analysis. Datasets of RGB images were acquired, both private from the Ecuadorian Diabetes Association (EDA) and public (EyePACS) available on the Internet. Training and validation of the model were performed with Python, the TensorFlow framework and the Keras library. The results showed that the model has an accuracy in DR identification of 80% comparable to that of ophthalmologists (specialists), showing a statistically significant association according to the chi-square test and a very high Spearman correlation (rho = 0.857). This resulted in a high concordance between both evaluations (model vs. specialists). In addition, the CNN model significantly reduced the manual DR diagnosis time from 5–10 min to 15–30 s. The implementation of this tool could potentially improve the diagnosis of DR and the prescription of appropriate clinical treatments for affected patients.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguagallo, L., Salazar-Fierro, F., García-Santillán, J., Posso-Yépez, M., Landeta-López, P., García-Santillán, I.: Analysis of student performance applying data mining techniques in a virtual learning environment. Int. J. Emerg. Technol. Learn. (iJET) 18(11), pp. 175–195 (Jun 2023). https://doi.org/10.3991/ijet.v18i11.37309, https://online-journals.org/index.php/i-jet/article/view/37309
Alyoubi, W.L., Shalash, W.M., Abulkhair, M.F.: Diabetic retinopathy detection through deep learning techniques: a review. Inform. Med. Unlocked 20 (2020). https://doi.org/10.1016/j.imu.2020.100377. (cited by: 249; All Open Access, Gold Open Access)
Bravo, J.D., Correa, A., Bravo, A., Bravo, R., Villada, O.A.: Retinopatía diabética y edema macular diabético en población de Antioquia. Iatreia 35(2), 98–107 (Feb 2022). https://doi.org/10.17533/udea.iatreia.125
Chacua, B., et al.: People identification through facial recognition using deep learning. In: 2019 IEEE Latin American Conference on Computational Intelligence (LA-CCI), pp. 1–6 (2019). https://doi.org/10.1109/LA-CCI47412.2019.9037043
Cheloni, R., Gandolfi, S.A., Signorelli, C., Odone, A.: Global prevalence of diabetic retinopathy: protocol for a systematic review and meta-analysis. BMJ Open 9(3), e022188 (Feb 2019).https://doi.org/10.1136/bmjopen-2018-022188
da Conceição Nunes, H., Guimarães, R.M.C., Dadalto, L.: Desafíos bioéticos del uso de la inteligencia artificial en los hospitales. Revista Bioética 30(1), 82–93 (Feb 2022). https://doi.org/10.1590/1983-80422022301509es
Durga, B.K., Rajesh, V.: A ResNet deep learning based facial recognition design for future multimedia applications. Comput. Electric. Eng. 104, 108384 (Feb 2022). https://doi.org/10.1016/j.compeleceng.2022.108384
Emma, D., Jared, J., Will, C.: Diabetic Retinopathy Detection: Dataset. Kaggle (2015). https://www.kaggle.com/c/diabetic-retinopathy-detection/data
Farag, M.M., Fouad, M., Abdel-Hamid, A.T.: Automatic severity classification of diabetic retinopathy based on DenseNet and convolutional block attention module. IEEE Access 10, 38299–38308 (2022). https://doi.org/10.1109/ACCESS.2022.3165193
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Commun. ACM 39(11), 27–34 (1996). https://doi.org/10.1145/240455.240464
Gartika, N., Mustopa, A., Hidayat, Y.: The relationship of self-efficacy with adherence in restricting fluid intake in middle adult hemodialysis patients. J. Phys. Conf. Ser. 1764(1), 12006 (Feb 2021).https://doi.org/10.1088/1742-6596/1764/1/012006
Gómez-Valverde, J.J., et al.: Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomed. Opt. Express 10(2), 892 (Feb 2019). https://doi.org/10.1364/BOE.10.000892
Hamzah Abed, M., Muhammed, L.A.N., Toman, S.H.: Diabetic retinopathy diagnosis based on convolutional neural network. J. Phys. Conf. Ser. 1999(1), 12117 (Feb 2021). https://doi.org/10.1088/1742-6596/1999/1/012117
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE (Feb 2016). https://doi.org/10.1109/CVPR.2016.90
Herrera-Granda, I.D., et al.: Artificial neural networks for bottled water demand forecasting: a small business case study. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS, vol. 11507, pp. 362–373. Springer Verlag (2019). https://doi.org/10.1007/978-3-030-20518-8_31
Howard, A.G., et al.: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (2017). https://doi.org/10.48550/arXiv.1704.04861
Huang, G., Liu, Z., Maaten, L.V.D., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269. IEEE (Feb 2017). https://doi.org/10.1109/CVPR.2017.243
Ibáñez-bruron, M., Cruzat, A., Órdenes-Cavieres, G., Coria, M.: Exactitud de tamizaje de retinopatía diabética: inteligencia artificial versus tecnólogos médicos entrenados. Revista médica de Chile 149(4), 493–500 (Feb 2021). https://doi.org/10.4067/s0034-98872021000400493
IDF: International Diabetes Federation (2023). https://idf.org/our-network/regions-and-members/south-and-central-america/members/ecuador/federacion-ecuatoriana-de-diabetes/
Jiwani, N., Gupta, K., Afreen, N.: A convolutional neural network approach for diabetic retinopathy classification. In: 2022 IEEE 11th International Conference on Communication Systems and Network Technologies (CSNT), pp. 357–361. IEEE (Feb 2022). https://doi.org/10.1109/CSNT54456.2022.9787577
Juma, A., Rodríguez, J., Caraguay, J., Naranjo, M., Quiña-Mera, A., García-Santillán, I.: Integration and evaluation of social networks in virtual learning environments: a case study. In: Botto-Tobar, M., et al. (eds.) Technology Trends, pp. 245–258. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-05532-5_18
Lind, D., Marchal, W., Wathen, S.: Statistical Techniques in Business and Economics, 18\(^\circ \) edn. McGraw-Hill Education, New York (2020)
Lu, L., Zou, G., Chen, L., Lu, Q., Wu, M., Li, C.: Elevated NLRP3 inflammasome levels correlate with vitamin D in the vitreous of proliferative diabetic retinopathy. Front. Med. 8 (Feb 2021). https://doi.org/10.3389/fmed.2021.736316
Maison, Lestari, T., Luthfi, A.: Retinal blood vessel segmentation using Gaussian Filter. J. Phys. Conf. Ser. 1376(1), 12023 (Feb 2019). https://doi.org/10.1088/1742-6596/1376/1/012023
Montenegro, S., Pusdá-Chulde, M., Caranqui-Sánchez, V., Herrera-Tapia, J., Ortega-Bustamante, C., García-Santillán, I.: Android mobile application for cattle body condition score using convolutional neural networks. In: Narváez, F.R., Urgilés, F., Bastos-Filho, T.F., Salgado-Guerrero, J.P. (eds.) Smart Technologies, Systems and Applications, pp. 91–105. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-32213-6_7
Mushtaq, G., Siddiqui, F.: Detection of diabetic retinopathy using deep learning methodology. IOP Conf. Ser. Mater. Sci. Eng. 1070(1), 12049 (Feb 2021). https://doi.org/10.1088/1757-899X/1070/1/012049
Oladele, T.O., Ogundokun, R.O., Kayode, A.A., Adegun, A.A., Adebiyi, M.O.: Application of Data Mining Algorithms for Feature Selection and Prediction of Diabetic Retinopathy, pp. 716–730 (2019). https://doi.org/10.1007/978-3-030-24308-1_56
Pusdá-Chulde, M.R., Salazar-Fierro, F.A., Sandoval-Pillajo, L., Herrera-Granda, E.P., García-Santillán, I.D., De Giusti, A.: Image Analysis Based on Heterogeneous Architectures for Precision Agriculture: A Systematic Literature Review, pp. 51–70 (2020). https://doi.org/10.1007/978-3-030-33614-1_4
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, pp. 234–241. Springer International Publishing, Cham (2015)
Sallam, M.S., Asnawi, A.L., Olanrewaju, R.F.: Diabetic retinopathy grading using ResNet convolutional neural network. In: 2020 IEEE Conference on Big Data and Analytics (ICBDA), pp. 73–78. IEEE (Feb 2020). https://doi.org/10.1109/ICBDA50157.2020.9289822
Shanthini, A., Manogaran, G., Vadivu, G., Kottilingam, K., Nithyakani, P., Fancy, C.: Threshold segmentation based multi-layer analysis for detecting diabetic retinopathy using convolution neural network. J. Ambient Intell. Humaniz. Comput. (Feb 2021). https://doi.org/10.1007/s12652-021-02923-5
Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9. IEEE (Feb 2015). https://doi.org/10.1109/CVPR.2015.7298594
Tácuna-Calderón, A., Moncada-Mapelli, E., Lens-Sardón, L., Huaccho-Rojas, J., Gamarra-Castillo, F., Salazar-Granara, A.: Estrategias de la Organización Mundial de la Salud en Medicina Tradicional y Reconocimiento de Sistemas de Medicina Tradicional. Revista del Cuerpo Médico del HNAAA 13(1), 101–102 (Feb 2020). https://doi.org/10.35434/rcmhnaaa.2020.131.633
Tan, M., Le, Q.V.: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks (2020). https://doi.org/10.48550/arXiv.1905.11946
Tan, T., et al.: Retinal neural dysfunction in diabetes revealed with handheld chromatic pupillometry. Clin. Exp. Ophthalmol. 50(7), 745–756 (Feb 2022). https://doi.org/10.1111/ceo.14116
Tirado-Bou, A., Marín-Prades, R., Baiguera-Tambutti, L., Sanz, P.J., Martí, J.V.: Desarrollo de una interfaz para el prototipado y validación de un robot móvil autónomo de uso hospitalario. In: XLIII Jornadas de Automática: libro de actas: 7, 8 y 9 de septiembre de 2022, Logroño (La Rioja), pp. 156–164. Servizo de Publicacións da UDC (Feb 2022). https://doi.org/10.17979/spudc.9788497498418.0156
Yudhana, A., Akbar, S.A., Farezi, A., Ghazali, K.H., Nuraisyah, F., Rosyady, P.A.: Glucose content analysis using image processing and machine learning techniques. In: 2022 5th International Conference on Information and Communications Technology (ICOIACT), pp. 513–516. IEEE (Feb 2022). https://doi.org/10.1109/ICOIACT55506.2022.9972142
Acknowledgments
We thank the Ecuadorian Diabetes Association for providing the retinal images of the eye and its specialists for making the visual diagnoses of Diabetic Retinopathy, which were of great support for the development of this study.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ulloa, F., Sandoval-Pillajo, L., Landeta-López, P., Granda-Peñafiel, N., Pusdá-Chulde, M., García-Santillán, I. (2025). Identification of Diabetic Retinopathy from Retinography Images Using a Convolutional Neural Network. In: Valencia-García, R., Borodulina, T., Del Cioppo-Morstadt, J., Moran-Castro, C.E., Vera-Lucio, N. (eds) Technologies and Innovation. CITI 2024. Communications in Computer and Information Science, vol 2276. Springer, Cham. https://doi.org/10.1007/978-3-031-75702-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-75702-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75701-3
Online ISBN: 978-3-031-75702-0
eBook Packages: Computer ScienceComputer Science (R0)