Skip to main content

Deep LLL on Module Lattices

  • Conference paper
  • First Online:
Information Security (ISC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15258))

Included in the following conference series:

Abstract

The LLL algorithm, renowned for its application to Euclidean lattices, plays a crucial role in lattice cryptanalysis by offering a standard method for refining lattice bases. With the increasing importance of module lattices—defined as modules over the ring of integers of a number field—in lattice cryptography, there is a compelling need to adapt the LLL algorithm for module lattices. This paper presents a generalization of the Deep LLL algorithm—a variant of LLL proposed by Schnorr and Euchner [25], which relaxes the restriction on the insertion position—to module lattices. Deep LLL has been widely used in BKZ reduction as a sub-procedure. Our algorithm is suitable as a sub-procedure in adapted BKZ reduction for module lattices. We implemented a proof-of-concept version of our algorithm, and compared to the LLL algorithm on module lattices, our algorithm outperformed it in all of our experimental cases. Additionally, we introduced a simplification that avoids invoking the computation of the Module Hermite Form and corrected mistakes in the previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhavi, A.: The optimal LLL algorithm is still polynomial in fixed dimension. Theor. Comput. Sci. 297(1), 3–23 (2003). https://doi.org/10.1016/S0304-3975(02)00616-3, https://www.sciencedirect.com/science/article/pii/S0304397502006163. Latin American Theoretical Informatics

  2. Bernard, O., Roux-Langlois, A.: Twisted-PHS: using the product formula to solve approx-SVP in ideal lattices. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 349–380. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_12

    Chapter  Google Scholar 

  3. Beullens, W., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Lattice-based blind signatures: short, efficient, and round-optimal. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, pp. 16–29 (2023)

    Google Scholar 

  4. Biasse, J.F., Song, F.: Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pp. 893–902. Society for Industrial and Applied Mathematics, USA (2016)

    Google Scholar 

  5. Biasse, J.F., Fieker, C., Hofmann, T.: On the computation of the HNF of a module over the ring of integers of a number field. J. Symb. Comput. 80, 581–615 (2017). https://doi.org/10.1016/j.jsc.2016.07.027 , https://www.sciencedirect.com/science/article/pii/S0747717116300736

  6. Bos, J., et al.: Crystals - kyber: a CCA-secure module-lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 353–367 (2018). https://doi.org/10.1109/EuroSP.2018.00032

  7. Cohen, H.: Advanced Topics in Computational Number Theory. Springer, New York (1999). https://doi.org/10.1007/978-1-4419-8489-0

    Book  Google Scholar 

  8. Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of principal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_20

    Chapter  Google Scholar 

  9. Cramer, R., Ducas, L., Wesolowski, B.: Short stickelberger class relations and application to ideal-SVP. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 324–348. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_12

    Chapter  Google Scholar 

  10. De Micheli, G., Micciancio, D., Pellet-Mary, A., Tran, N.: Reductions from module lattices to free module lattices, and application to dequantizing module-LLL. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. LNCS, vol. 14085, pp. 836–865. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38554-4_27

    Chapter  Google Scholar 

  11. Ducas, L., et al.: Crystals-Dilithium: a lattice-based digital signature scheme. IACR Trans. Cryptogr. Hardw. Embed. Systems pp. 238–268 (2018). https://doi.org/10.46586/tches.v2018.i1.238-268

  12. Eisenträger, K., Hallgren, S., Kitaev, A., Song, F.: A quantum algorithm for computing the unit group of an arbitrary degree number field. In: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC 2014, pp. 293–302. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2591796.2591860

  13. Fieker, C., Pohst, M.E.: On lattices over number fields. In: Cohen, H. (ed.) ANTS 1996. LNCS, vol. 1122, pp. 133–139. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61581-4_48

    Chapter  Google Scholar 

  14. Fieker, C., Stehlé, D.: Short bases of lattices over number fields. In: Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS 2010. LNCS, vol. 6197, pp. 157–173. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14518-6_15

    Chapter  Google Scholar 

  15. Fouque, P.A., et al.: Falcon: fast-Fourier lattice-based compact signatures over NTRU. Submission to the NIST’s Post-quantum Cryptogr. Stand. Process 36(5), 1–75 (2018)

    Google Scholar 

  16. Kaiblinger, N.: Cyclotomic rings with simple Euclidean algorithm. JP J. Algebra Number Theory Appl. 23 (2011)

    Google Scholar 

  17. Kim, T., Lee, C.: Lattice reductions over Euclidean rings with applications to cryptanalysis. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol. 10655, pp. 371–391. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71045-7_19

    Chapter  Google Scholar 

  18. Lee, C., Pellet-Mary, A., Stehlé, D., Wallet, A.: An LLL algorithm for module lattices. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 59–90. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_3

    Chapter  Google Scholar 

  19. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)

    Article  MathSciNet  Google Scholar 

  20. Mukherjee, T., Stephens-Davidowitz, N.: Lattice reduction for modules, or how to reduce ModuleSVP to ModuleSVP. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 213–242. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_8

    Chapter  Google Scholar 

  21. Napias, H.: A generalization of the LLL-algorithm over Euclidean rings or orders. J. Theorie Nombres Bordeaux 8, 387–396 (1996). https://api.semanticscholar.org/CorpusID:54954327

  22. Odagawa, T., Nuida, K.: Halt properties and complexity evaluations for optimal DeepLLL algorithm families. arXiv preprint arXiv:2105.14695 (2021)

  23. Pan, Y., Xu, J., Wadleigh, N., Cheng, Q.: On the ideal shortest vector problem over random rational primes. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 559–583. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_20

    Chapter  Google Scholar 

  24. Pellet-Mary, A., Hanrot, G., Stehlé, D.: Approx-SVP in ideal lattices with pre-processing. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 685–716. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_24

    Chapter  Google Scholar 

  25. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994)

    Article  MathSciNet  Google Scholar 

  26. T.U, D.: SVP challenge

    Google Scholar 

  27. Yasuda, M., Yamaguchi, J.: A new polynomial-time variant of LLL with deep insertions for decreasing the squared-sum of gram-Schmidt lengths. Des. Codes Cryptogr. 87(11), 2489-2505 (2019). https://doi.org/10.1007/s10623-019-00634-9

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Y., Cao, H., Wang, M. (2025). Deep LLL on Module Lattices. In: Mouha, N., Nikiforakis, N. (eds) Information Security. ISC 2024. Lecture Notes in Computer Science, vol 15258. Springer, Cham. https://doi.org/10.1007/978-3-031-75764-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75764-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75763-1

  • Online ISBN: 978-3-031-75764-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics