Abstract
The LLL algorithm, renowned for its application to Euclidean lattices, plays a crucial role in lattice cryptanalysis by offering a standard method for refining lattice bases. With the increasing importance of module lattices—defined as modules over the ring of integers of a number field—in lattice cryptography, there is a compelling need to adapt the LLL algorithm for module lattices. This paper presents a generalization of the Deep LLL algorithm—a variant of LLL proposed by Schnorr and Euchner [25], which relaxes the restriction on the insertion position—to module lattices. Deep LLL has been widely used in BKZ reduction as a sub-procedure. Our algorithm is suitable as a sub-procedure in adapted BKZ reduction for module lattices. We implemented a proof-of-concept version of our algorithm, and compared to the LLL algorithm on module lattices, our algorithm outperformed it in all of our experimental cases. Additionally, we introduced a simplification that avoids invoking the computation of the Module Hermite Form and corrected mistakes in the previous work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akhavi, A.: The optimal LLL algorithm is still polynomial in fixed dimension. Theor. Comput. Sci. 297(1), 3–23 (2003). https://doi.org/10.1016/S0304-3975(02)00616-3, https://www.sciencedirect.com/science/article/pii/S0304397502006163. Latin American Theoretical Informatics
Bernard, O., Roux-Langlois, A.: Twisted-PHS: using the product formula to solve approx-SVP in ideal lattices. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 349–380. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_12
Beullens, W., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Lattice-based blind signatures: short, efficient, and round-optimal. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, pp. 16–29 (2023)
Biasse, J.F., Song, F.: Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pp. 893–902. Society for Industrial and Applied Mathematics, USA (2016)
Biasse, J.F., Fieker, C., Hofmann, T.: On the computation of the HNF of a module over the ring of integers of a number field. J. Symb. Comput. 80, 581–615 (2017). https://doi.org/10.1016/j.jsc.2016.07.027 , https://www.sciencedirect.com/science/article/pii/S0747717116300736
Bos, J., et al.: Crystals - kyber: a CCA-secure module-lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 353–367 (2018). https://doi.org/10.1109/EuroSP.2018.00032
Cohen, H.: Advanced Topics in Computational Number Theory. Springer, New York (1999). https://doi.org/10.1007/978-1-4419-8489-0
Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of principal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_20
Cramer, R., Ducas, L., Wesolowski, B.: Short stickelberger class relations and application to ideal-SVP. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 324–348. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_12
De Micheli, G., Micciancio, D., Pellet-Mary, A., Tran, N.: Reductions from module lattices to free module lattices, and application to dequantizing module-LLL. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. LNCS, vol. 14085, pp. 836–865. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38554-4_27
Ducas, L., et al.: Crystals-Dilithium: a lattice-based digital signature scheme. IACR Trans. Cryptogr. Hardw. Embed. Systems pp. 238–268 (2018). https://doi.org/10.46586/tches.v2018.i1.238-268
Eisenträger, K., Hallgren, S., Kitaev, A., Song, F.: A quantum algorithm for computing the unit group of an arbitrary degree number field. In: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC 2014, pp. 293–302. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2591796.2591860
Fieker, C., Pohst, M.E.: On lattices over number fields. In: Cohen, H. (ed.) ANTS 1996. LNCS, vol. 1122, pp. 133–139. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61581-4_48
Fieker, C., Stehlé, D.: Short bases of lattices over number fields. In: Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS 2010. LNCS, vol. 6197, pp. 157–173. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14518-6_15
Fouque, P.A., et al.: Falcon: fast-Fourier lattice-based compact signatures over NTRU. Submission to the NIST’s Post-quantum Cryptogr. Stand. Process 36(5), 1–75 (2018)
Kaiblinger, N.: Cyclotomic rings with simple Euclidean algorithm. JP J. Algebra Number Theory Appl. 23 (2011)
Kim, T., Lee, C.: Lattice reductions over Euclidean rings with applications to cryptanalysis. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol. 10655, pp. 371–391. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71045-7_19
Lee, C., Pellet-Mary, A., Stehlé, D., Wallet, A.: An LLL algorithm for module lattices. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 59–90. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_3
Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)
Mukherjee, T., Stephens-Davidowitz, N.: Lattice reduction for modules, or how to reduce ModuleSVP to ModuleSVP. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 213–242. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_8
Napias, H.: A generalization of the LLL-algorithm over Euclidean rings or orders. J. Theorie Nombres Bordeaux 8, 387–396 (1996). https://api.semanticscholar.org/CorpusID:54954327
Odagawa, T., Nuida, K.: Halt properties and complexity evaluations for optimal DeepLLL algorithm families. arXiv preprint arXiv:2105.14695 (2021)
Pan, Y., Xu, J., Wadleigh, N., Cheng, Q.: On the ideal shortest vector problem over random rational primes. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 559–583. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_20
Pellet-Mary, A., Hanrot, G., Stehlé, D.: Approx-SVP in ideal lattices with pre-processing. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 685–716. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_24
Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994)
T.U, D.: SVP challenge
Yasuda, M., Yamaguchi, J.: A new polynomial-time variant of LLL with deep insertions for decreasing the squared-sum of gram-Schmidt lengths. Des. Codes Cryptogr. 87(11), 2489-2505 (2019). https://doi.org/10.1007/s10623-019-00634-9
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, Y., Cao, H., Wang, M. (2025). Deep LLL on Module Lattices. In: Mouha, N., Nikiforakis, N. (eds) Information Security. ISC 2024. Lecture Notes in Computer Science, vol 15258. Springer, Cham. https://doi.org/10.1007/978-3-031-75764-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-75764-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75763-1
Online ISBN: 978-3-031-75764-8
eBook Packages: Computer ScienceComputer Science (R0)