Skip to main content

A Faster Variant of CGL Hash Function via Efficient Backtracking Checks

  • Conference paper
  • First Online:
Information Security (ISC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15258))

Included in the following conference series:

  • 204 Accesses

Abstract

CGL hash function is an isogeny-based hash function that computes non-backtracking paths on a supersingular isogeny graph. Since one of the problems of CGL hash function is its relatively slow computational time, many acceleration methods have been studied, including the use of Legendre form, radical isogenies. An algorithm for computing CGL hash functions proposed at SAC’22 has achieved acceleration of several orders of magnitude, by using \(2^n\)-isogeny for an integer \(n = \varTheta (\log p)\), where p is characteristic of the underlying field. In the algorithm, the backtracking 2-isogeny between two consecutive \(2^n\)-isogenies must be prevented to assure the security of the hash function.

In this paper, we propose a faster algorithm for CGL hash function by reducing the overhead of the backtracking check in the method at SAC’22. Moreover, as no explicit implementation of the aforementioned algorithm exists to the best of our knowledge, we implement the algorithm with our proposed backtracking check. We conduct a detailed and precise complexity analysis of the algorithm and other previously proposed ones, by programmatically counting the actual number of operations over the underlying finite field. We demonstrate that the proposed algorithm reduces the cost by \(7.6\%\) compared to the original algorithm with 256-bit prime, achieving the fastest computation of CGL hash functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adj, G., Rodríguez-Henríquez, F.: Square root computation over even extension fields. IEEE Trans. Comput. 63(11), 2829–2841 (2014). https://doi.org/10.1109/TC.2013.145

    Article  MathSciNet  Google Scholar 

  2. Arpin, S., Camacho-Navarro, C., Lauter, K., Lim, J., Nelson, K., Scholl, T.: Adventures in supersingularland. Exp. Math. 32(2), 241–268 (2021). https://doi.org/10.1080/10586458.2021.1926009

    Article  MathSciNet  Google Scholar 

  3. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14008, pp. 423–447. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_15

    Chapter  Google Scholar 

  4. Castryck, W., Decru, T., Houben, M., Vercauteren, F.: Horizontal racewalking using radical isogenies. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13792, pp. 67–96. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22966-4_3

    Chapter  Google Scholar 

  5. Castryck, W., Decru, T., Vercauteren, F.: Radical isogenies. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 493–519. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_17

    Chapter  Google Scholar 

  6. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_15

    Chapter  Google Scholar 

  7. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from expander graphs. J. Crypt. 22(1), 93–113 (2009). https://doi.org/10.1007/s00145-007-9002-x

    Article  MathSciNet  Google Scholar 

  8. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_21

    Chapter  Google Scholar 

  9. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Paper 2006/291 (2006). https://eprint.iacr.org/2006/291

  10. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014). https://doi.org/10.1515/jmc-2012-0015

    Article  MathSciNet  Google Scholar 

  11. Doliskani, J., Pereira, G.C.C.F., Barreto, P.S.L.M.: Faster cryptographic hash function from supersingular isogeny graphs. In: Smith, B., Wu, H. (eds.) SAC 2022. LNCS, vol. 13742, pp. 399–415. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-58411-4_18

    Chapter  Google Scholar 

  12. Hashimoto, Y., Nuida, K.: Efficient construction of CGL hash function using Legendre curves. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E106.A(9), 1131–1140 (2023). https://doi.org/10.1587/transfun.2022DMP0003

  13. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_2

    Chapter  Google Scholar 

  14. Maddock, J., Kormanyos, C.: Boost multiprecision library. https://github.com/boostorg/multiprecision

  15. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key recovery attack on SIDH. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14008, pp. 448–471. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_16

    Chapter  Google Scholar 

  16. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Math. Comput. 48, 243–264 (1987). https://doi.org/10.1090/S0025-5718-1987-0866113-7

    Article  MathSciNet  Google Scholar 

  17. Pereira, G., Doliskani, J., Jao, D.: X-only point addition formula and faster compressed SIKE. J. Cryptogr. Eng. 11, 57–69 (2021). https://doi.org/10.1007/s13389-020-00245-4

    Article  Google Scholar 

  18. Pizer, A.K.: Ramanujan graphs and Hecke operators. Bull. (New Series) Am. Math. Soc. 23(1), 127–137 (1990). https://doi.org/10.1090/S0273-0979-1990-15918-X

  19. Pizer, A.K.: Ramanujan graphs. AMS/IP Stud. Adv. Math. 7, 159–178 (1998)

    Article  MathSciNet  Google Scholar 

  20. Pollard, J.: Monte Carlo methods for index compuation mod p. Math. Comput. 32(143), 918–924 (1978). https://doi.org/10.2307/2006496

  21. Robert, D.: Breaking SIDH in polynomial time. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14008, pp. 472–503. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_17

    Chapter  Google Scholar 

  22. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryptology ePrint Archive, Paper 2006/145 (2006). https://eprint.iacr.org/2006/145

  23. Silverman, J.H.: The Arithmetic of Elliptic Curves, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/978-0-387-09494-6

    Book  Google Scholar 

  24. Vélu, J.: Isogenies entre courbes elliptiques. Compets-Rendus de l’Academie des Sciences Serie I 273, 238–241 (1971)

    MathSciNet  Google Scholar 

  25. Washington, L.C.: Elliptic Curves: Number Theory and Cryptography, 2nd edn. Chapman & Hall/CRC (2008). https://doi.org/10.1201/9781420071474

  26. Yoshida, R., Takashima, K.: Computing a sequence of 2-isogenies on supersingular elliptic curves. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E96.A(1), 158–165 (2013). https://doi.org/10.1587/transfun.E96.A.158

  27. Zanon, G.H.M., Simplicio, M.A., Pereira, G.C.C.F., Doliskani, J., Barreto, P.S.L.M.: Faster isogeny-based compressed key agreement. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 248–268. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_12

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported by JST CREST Grant Number JPMJCR2113 and JSPS KAKENHI Grant Number 24K20771, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shota Inoue .

Editor information

Editors and Affiliations

A Appendix

A Appendix

1.1 A.1 Collision Finding for DPB Method Without the Backtracking Check

We show that the backtracking check in DPB method is necessary to be collision-resistant. When the backtracking check is removed, DPB method can compute backtracking paths, which corresponds to non-cyclic isogenies. Thus, the collision-resistance of DPB method is not reduced to Problem 2.

Fig. 1.
figure 1

The strategy to find a collision for DPB method without the backtracking check

Actually, we can show a polynomial time collision-finding algorithm for DPB method without the backtracking check. The strategy is shown in Fig. 1. We assume that n is even. We can compute \(m,m_0,m_1\in [0,2^n)\) such that \(h(m) = h(m_0 || m_1)\), where h is the hash function and || is the concatenation. Let \(\{P_0, Q_0\} \subset E_0[2^n]\) be a basis of \(E_0[2^n]\), \(E_1\) be \(E_0/\langle P_0 + m_0Q_0 \rangle \), and \(\{P_1, Q_1\} \subset E_1[2^n]\) be a basis of \(E_1[2^n]\). The collision pair satisfying \(h(m) = h(m_0 || m_1)\) implies that \(j(E_0/\langle P_0 +~\hbox {m} Q_0\rangle ) = j(E_1/\langle P_1+m_1Q_1\rangle )\).

Firstly, the integer m is randomly selected. Then, \(m_0\) is selected as the lower n/2 bits of \(m_0\) is the same as that of m. The selection makes the first n/2 steps of the paths corresponding to m and \(m_0\) the same. Finally, we compute \(m_1\) so that the path corresponding to \(m_1\) can track the path to \(E_0/\langle P_0+mQ_0\rangle \), which is possible by deciding \(m_1\) from lower bits.

The algorithm fails when the backtracking isogeny cannot be computed at the curve \(E_1\). However, the probability of the failure is negligible by selecting the upper bits of \(m_0\) randomly. The algorithm is a probabilistic polynomial time algorithm overall, and we actually found collisions. The code to find collisions is available at the following GitHub repository: https://github.com/hedwig100/cgl-cost-evaluation.

1.2 A.2 The Cost Ratios of Each Operation in \(\mathbb {F}_p\)

The cost ratios of multiplication, square, addition, and inversion in \(\mathbb {F}_p\) are computed using Boost Multiplication Library. The computed ratios are listed in Table 3. These ratios are used to convert the complexities represented by \(\textrm{M},\textrm{S},\textrm{A}\), and \(\textrm{I}\) in Table 1 to the complexities represented only by \(\textrm{M}\) in Table 4. The acceleration ratios in Table 2 are computed from the complexities represented only by \(\textrm{M}\).

Table 3. The cost ratios of each operation in \(\mathbb {F}_p\) for 256, 512, 1024, 1536-bit primes

1.3 A.3 The Costs Represented only by Multiplication

The complexity represented in Table 1 is converted to the complexity represented only by \(\textrm{M}\) using the cost ratios in Table 3. The converted complexities are listed in Table 4.

Table 4. The average complexities of each algorithm to compute hash per bit of input. These complexities are represented only by \(\textrm{M}\) using the ratios in Table 3.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Inoue, S., Aikawa, Y., Takagi, T. (2025). A Faster Variant of CGL Hash Function via Efficient Backtracking Checks. In: Mouha, N., Nikiforakis, N. (eds) Information Security. ISC 2024. Lecture Notes in Computer Science, vol 15258. Springer, Cham. https://doi.org/10.1007/978-3-031-75764-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75764-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75763-1

  • Online ISBN: 978-3-031-75764-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics