Abstract
In this paper, we consider the parameter synthesis problem for parametric Markov decision processes (MDP). Computing the maximal expected value of satisfaction of a logical formula in parametric MDP is a challenging task. Thus, we adopt the scenario approach: instead of computing the precise rational function \(f_{\varphi }\) representing e.g. the maximal expected value, we aim at the approximation function \(\tilde{f}_{\varphi , \lambda }\) that is \(\lambda \)-probably approximately correct with respect to the desired statistical guarantees. The approximation function is based on a template chosen by the user, for instance a polynomial with fixed degree. By means of several theoretical results, we discuss the relation of \(\tilde{f}_{\varphi , \lambda }\) and \(f_{\varphi }\), and propose a framework for checking properties of the Markov model using \(\tilde{f}_{\varphi , \lambda }\). An extensive empirical evaluation show the effectiveness of our framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-40903-8_8
Badings, T.S., Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.-P., Topcu, U.: Scenario-based verification of uncertain parametric MDPs. Int. J. Softw. Tools Technol. Transf. 24(5), 803–819 (2022). https://doi.org/10.1007/s10009-022-00673-z
Baier, C., Hensel, C., Hutschenreiter, L., Junges, S., Katoen, J.-P., Klein, J.: Parametric Markov chains: PCTL complexity and fraction-free Gaussian elimination. Inf. Comput. 272, 104504 (2020). https://doi.org/10.1016/j.ic.2019.104504
Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
Barbier, M., et al.: Validation of perception and decision-making systems for autonomous driving via statistical model checking. In: 2019 IEEE Intelligent Vehicles Symposium, pp. 252–259. IEEE (2019). https://doi.org/10.1109/IVS.2019.8813793
Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998). https://doi.org/10.1287/moor.23.4.769
Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1), 1–13 (1999). https://doi.org/10.1016/S0167-6377(99)00016-4
Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solutions. Int. J. Softw. Tools Technol. Transf. 21(1), 1–29 (2019). https://doi.org/10.1007/s10009-017-0469-y
Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60692-0_70
Billingsley, P.: Probability and Measure. Wiley (1995)
Calafiore, G.C., Campi, M.C.: Uncertain convex programs: randomized solutions and confidence levels. Math. Program. 102(1), 25–46 (2005). https://doi.org/10.1007/s10107-003-0499-y
Calafiore, G.C., Campi, M.C.: The scenario approach to robust control design. IEEE Trans. Autom. Control 51(5), 742–753 (2006). https://doi.org/10.1109/TAC.2006.875041
Campi, M.C., Garatti, S.: The exact feasibility of randomized solutions of uncertain convex programs. SIAM J. Optim. 19(3), 1211–1230 (2008). https://doi.org/10.1137/07069821X
Campi, M.C., Garatti, S., Prandini, M.: The scenario approach for systems and control design. Annu. Rev. Control. 33(2), 149–157 (2009). https://doi.org/10.1016/j.arcontrol.2009.07.001
Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0_21
Dehnert, C., et al.: PROPhESY: A PRObabilistic ParamEter SYnthesis tool. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_13
Fang, X., Calinescu, R., Gerasimou, S., Alhwikem, F.: Fast parametric model checking through model fragmentation. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering: ICSE, pp. 835–846. IEEE (2021). https://doi.org/10.1109/ICSE43902.2021.00081
Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification techniques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21455-4_3
Gainer, P., Hahn, E.M., Schewe, S.: Accelerated model checking of parametric Markov chains. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 300–316. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_18
Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the construction and analysis of distributed processes. Int. J. Softw. Tools Technol. Transf. 15(2), 89–107 (2013). https://doi.org/10.1007/s10009-012-0244-z
Ghaoui, L.E., Oustry, F., Lebret, H.: Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9(1), 33–52 (1998). https://doi.org/10.1137/S1052623496305717
Givan, R., Leach, S.M., Dean, T.L.: Bounded-parameter Markov decision processes. Artif. Intell. 122(1–2), 71–109 (2000). https://doi.org/10.1016/S0004-3702(00)00047-3
Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric Markov decision processes. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 146–161. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5_12
Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric Markov models. Int. J. Softw. Tools Technol. Transf. 13(1), 3–19 (2011). https://doi.org/10.1007/s10009-010-0146-x
Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9_22
Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects Comput. 6(5), 512–535 (1994). https://doi.org/10.1007/BF01211866
Hensel, C., Junges, S., Katoen, J.-P., Quatmann, T., Volk, M.: The probabilistic model checker Storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022). https://doi.org/10.1007/s10009-021-00633-z
Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages, and computation, 3rd edn., Pearson International Edition. Addison-Wesley (2007)
Jansen, N., et al.: Accelerating parametric probabilistic verification. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10696-0_31
Jansen, N., Junges, S., Katoen, J.-P.: Parameter synthesis in Markov models: a gentle survey. In: Raskin, J., Chatterjee, K., Doyen, L., Majumdar, R. (eds.) Principles of Systems Design. LNCS, vol. 13660, pp. 407–437. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22337-2_20
Junges, S., Katoen, J.-P., Pérez, G.A., Winkler, T.: The complexity of reachability in parametric Markov decision processes. J. Comput. Syst. Sci. 119, 183–210 (2021). https://doi.org/10.1016/j.jcss.2021.02.006
Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104 (2011). https://doi.org/10.1016/j.peva.2010.04.001
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47
Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In: QEST 2012: Ninth International Conference on Quantitative Evaluation of Systems, pp. 203–204. IEEE Computer Society (2012). https://doi.org/10.1109/QEST.2012.14
Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statistical model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 478–504. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91908-9_23
Li, R., Yang, P., Huang, C., Sun, Y., Xue, B., Zhang, L.: Towards practical robustness analysis for DNNs based on PAC-model learning. In: 2022 ACM/IEEE 44th International Conference on Software Engineering: ICSE, pp. 2189–2201. ACM (2022). https://doi.org/10.1145/3510003.3510143
Liu, Y., Turrini, A., Hahn, E.M., Xue, B., Zhang, L.: Scenario approach for parametric Markov models. In: André, É., Sun, J. (eds.) ATVA 2023. LNCS, vol. 14215, pp. 158–180. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-45329-8_8
Paigwar, A., Baranov, E., Renzaglia, A., Laugier, C., Legay, A.: Probabilistic collision risk estimation for autonomous driving: validation via statistical model checking. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 737–743. IEEE (2020). https://doi.org/10.1109/IV47402.2020.9304821
Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Statistics, Wiley (1994). https://doi.org/10.1002/9780470316887
Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter synthesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_4
Rockafellar, R.T.: Convex Analysis, vol. 11. Princeton University Press (1997)
Spel, J., Junges, S., Katoen, J.-P.: Finding provably optimal Markov chains. In: TACAS 2021. LNCS, vol. 12651, pp. 173–190. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2_10
Xie, J., Tan, W., Fang, B., Huang, Z.: Towards a statistical model checking method for safety-critical cyber-physical system verification. Secur. Commun. Networks 2021, 5536722:1–5536722:12 (2021). https://doi.org/10.1155/2021/5536722
Xue, B., Zhang, M., Easwaran, A., Li, Q.: PAC model checking of black-box continuous-time dynamical systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(11), 3944–3955 (2020). https://doi.org/10.1109/TCAD.2020.3012251
Acknowledgements
We thank Jianting Yang (CNRS@CREATE, 1 Create Way, #08-01 CREATE Tower, Singapore 138602) for improving a proof of the paper. Work supported in part by the CAS Project for Young Scientists in Basic Research under grant No. YSBR-040, NSFC under grant No. 61836005, the CAS Pioneer Hundred Talents Program, and the ISCAS New Cultivation Project ISCAS-PYFX-202201.
This project is part of the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant no. 101008233.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Chi, Z., Liu, Y., Turrini, A., Zhang, L., Jansen, D.N. (2025). A Scenario Approach for Parametric Markov Decision Processes. In: Jansen, N., et al. Principles of Verification: Cycling the Probabilistic Landscape . Lecture Notes in Computer Science, vol 15261. Springer, Cham. https://doi.org/10.1007/978-3-031-75775-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-75775-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75774-7
Online ISBN: 978-3-031-75775-4
eBook Packages: Computer ScienceComputer Science (R0)