Skip to main content

Learning Generalized Stochastic Petri Nets From Event Data

  • Chapter
  • First Online:
Principles of Verification: Cycling the Probabilistic Landscape

Abstract

Generalized Stochastic Petri Nets (GSPNs) are an established tool for representing and analyzing concurrency, timing, synchronization, precedence, and priority in processes. GSPNs emerged in the 1980s as the de facto standard for modeling stochastic processes using Petri nets, supported by tools such as GreatSPN. However, traditional applications of this technology assume that GSPNs are created manually. Given the widespread availability of event data in information systems, this seems sub-optimal. This explains the uptake of process mining, which starts from event data instead of manually created process models. There are dozens of techniques to discover basic (i.e., non-stochastic) Petri nets given an event log. However, there is an increasing interest in not just discovering control flow, but also learning the stochastic behavior based on event data. Therefore, we take GSPNs as the target representation for process discovery. Since there are numerous techniques to discover the control flow, we focus on the extensions provided by GSPNs. These include priorities, blocking, probabilities, and rates. In this paper, we sketch a concrete approach to discover probabilities and rates from event data. This is done by translating to GSPNs to Markov chains to which parameter synthesis is applied. Since priorities and blocking can be added without limiting GSPN-based performance analysis, we advocate the development of control-flow discovery techniques incorporating these features. Having GSPNs learned from event data, we can support more forward-looking forms of process mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that \(S_v \cap S_t = \emptyset \), \(M_{ final } \not \in S_v\), \(M_{ final } \not \in S_t\), and \(S = S_v \cup S_t \cup \{M_{ final }\}\).

References

  1. van der Aalst, W.: Process Mining. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  2. van der Aalst, W.M.P., Carmona, J. (eds.): Process Mining Handbook. LNCS, vol. 448. Springer, Cham (2022)

    Google Scholar 

  3. van der Aalst, W.M.P., van Hee, K.M., Reijers, H.A.: Analysis of discrete-time stochastic petri nets. Stat. Neerl. 54(2), 237–255 (2000)

    Article  MathSciNet  Google Scholar 

  4. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther, C.W.: Process mining: a two-step approach to balance between underfitting and overfitting. Softw. Syst. Model. 9(1), 87–111 (2010)

    Article  Google Scholar 

  5. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. QUT Technical report, FIT-TR-2003-03, Queensland University of Technology, Brisbane (2003). (Accepted for publication in IEEE Transactions on Knowledge and Data Engineering)

    Google Scholar 

  6. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets. Wiley (1995)

    Google Scholar 

  7. Alkhammash, H., Polyvyanyy, A., Moffat, A.: Stochastic directly-follows process discovery using grammatical inference. In: Guizzardi, G., Santoro, F., Mouratidis, H., Soffer, P. (eds.) CAiSE 2024, pp. 87–103. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-61057-8_6

  8. Alkhammash, H., Polyvyanyy, A., Moffat, A., García-Bañuelos, L.: Entropic relevance: a mechanism for measuring stochastic process models discovered from event data. Inf. Syst. 107, 101922 (2022)

    Google Scholar 

  9. Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 Years of GreatSPN. In: Fiondella, L., Puliafito, A. (eds.) Principles of Performance and Reliability Modeling and Evaluation. SSRE, pp. 227–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30599-8_9

    Chapter  Google Scholar 

  10. Augusto, A., et al.: Automated discovery of process models from event logs: review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019)

    Google Scholar 

  11. Augusto, A., Conforti, R., Marlon, M., La Rosa, M., Polyvyanyy, A.: Split miner: automated discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst. 59(2), 251–284 (2019)

    Google Scholar 

  12. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) International Conference on Business Process Management (BPM 2007). LNCS, vol. 4714, pp. 375–383. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-75183-0_27

  13. Burke, A., Leemans, S.J.J., Wynn, M.T.: Stochastic process discovery by weight estimation. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 260–272. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5_20

    Chapter  Google Scholar 

  14. Burke, A., Leemans, S.J.J., Wynn, M.T.: Discovering stochastic process models by reduction and abstraction. In: Buchs, D., Carmona, J. (eds.) PETRI NETS 2021. LNCS, vol. 12734, pp. 312–336. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76983-3_16

    Chapter  Google Scholar 

  15. Burke, A.T., Leemans, S.J.J., Wynn, M.T., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Stochastic process model-log quality dimensions: an experimental study. In: Burattin, A., Polyvyanyy, A., Weber, B., (eds.) International Conference on Process Mining (ICPM 2022), pp. 80–87. IEEE (2022)

    Google Scholar 

  16. Busi, N., Pinna, G.M.: Synthesis of nets with inhibitor arcs. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 151–165. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63141-0_11

    Chapter  Google Scholar 

  17. Campos, J., Marsan, M.A., Balbo, G., Conte, G.: Generalized stochastic petri nets: a definition at the net level and its implications. IEEE Trans. Softw. Eng. 19(2), 89–107 (1993)

    Article  Google Scholar 

  18. Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discovering petri nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85758-7_26

    Chapter  Google Scholar 

  19. Dehnert, C., et al.: Parameter synthesis for probabilistic systems. In: MBMV, pp. 72–74. Albert-Ludwigs-Universität Freiburg (2016)

    Google Scholar 

  20. Devillers, R., Tredup, R.: Synthesis of inhibitor-reset petri nets: algorithmic and complexity issues. In: Bernardinello, L., Petrucci, L. (eds.) PETRI NETS 2022, pp. 213–235. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06653-5_12

  21. Eisentraut, C., Hermanns, H., Katoen, J.-P., Zhang, L.: A semantics for every GSPN. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 90–109. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8_6

    Chapter  Google Scholar 

  22. Florin, G., Natkin, S.: Evaluation based upon stochastic petri nets of the maximum throughput of a full duplex protocol. In: Girault, C., Reisig, W. (eds.) Application and Theory of Petri Nets: Selected Papers from the First and the Second European Workshop on Application and Theory of Petri Nets Strasbourg, 23–26 September 1980 Bad Honnef, 28–30 September 1981, pp. 280–288. Springer, Heidelberg (1982). https://doi.org/10.1007/978-3-642-68353-4_45

  23. Haas, P.J.: Stochastic Petri Nets: Modelling, Stability. Simulation. Springer Series in Operations Research. Springer, Berlin (2002)

    Google Scholar 

  24. Junges, S., Katoen, J.-P., Stoelinga, M., Volk, M.: One net fits all. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 272–293. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91268-4_14

    Chapter  Google Scholar 

  25. Katoen, J.P.: GSPNs revisited: simple semantics and new analysis algorithms. In: Brandt, J., Heljanko, K. (eds.) 12th International Conference on Application of Concurrency to System Design (ACSD 2012), pp. 6–11. IEEE Computer Society (2012)

    Google Scholar 

  26. Leemans, S.J.J., van der Aalst, W.M.P., Brockhoff, T., Polyvyanyy, A.: Stochastic process mining: earth movers’ stochastic conformance. Inf. Syst. 102, 101724 (2021)

    Article  Google Scholar 

  27. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8_17

    Chapter  Google Scholar 

  28. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06257-0_6

    Chapter  Google Scholar 

  29. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and conformance checking. Softw. Syst. Model. 17(2), 599–631 (2018)

    Article  Google Scholar 

  30. Leemans, S.J.J., Li, T., Montali, M., Polyvyanyy, A.: Stochastic process discovery: can it be done optimally? In: Guizzardi, G., Santoro, F., Mouratidis, H., Soffer, P. (eds.) CAiSE 2024. LNCS, vol. 14663, pp. 36–52. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-61057-8_3

  31. Leemans, S.J.J., Mannel, L.L., Sidorova, N.: Significant stochastic dependencies in process models. Inf. Syst. 118, 102223 (2023)

    Article  Google Scholar 

  32. Leemans, S.J.J., Syring, A.F., van der Aalst, W.M.P.: Earth movers’ stochastic conformance checking. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNBIP, vol. 360, pp. 127–143. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26643-1_8

    Chapter  Google Scholar 

  33. Mannel, L.L., van der Aalst, W.M.P.: Finding complex process-structures by exploiting the token-game. In: Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 258–278. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2_15

    Chapter  Google Scholar 

  34. Mannhardt, F., Leemans, S.J.J., Schwanen, C.T., de Leoni, M.: Modelling data-aware stochastic processes - discovery and conformance checking. In: Gomes, L., Lorenz, R. (eds.) PETRI NETS 2023. LNC, vol. 13929, pp. 77–98. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33620-1_5

  35. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-perspective checking of process conformance. Computing 98(4), 407–437 (2016)

    Article  MathSciNet  Google Scholar 

  36. Ajmone Marsan, M., Balbo, G., Conte, G.: A class of generalised stochastic petri nets for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst. 2(2), 93–122 (1984)

    Google Scholar 

  37. Merlin, P., Faber, D.J.: Recoverability of communication protocols. IEEE Trans. Commun. 24(9), 1036–1043 (1976)

    Article  Google Scholar 

  38. Molloy, M.K.: On the Integration of Delay and Throughput Measures in Distributed Processing Models. PhD thesis, University of California, Los Angeles (1981)

    Google Scholar 

  39. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter synthesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_4

    Chapter  Google Scholar 

  40. Ramchandani, C.: Performance Evaluation of Asynchronous Concurrent Systems by Timed Petri Nets. PhD thesis, Massachusetts Institute of Technology, Cambridge (1973)

    Google Scholar 

  41. Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering stochastic petri nets with arbitrary delay distributions from event logs. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 15–27. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06257-0_2

    Chapter  Google Scholar 

  42. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering simulation models. Inf. Syst. 34(3), 305–327 (2009)

    Article  Google Scholar 

  43. Salmani, B., Katoen, J.P.: Automatically finding the right probabilities in Bayesian networks. J. Artif. Intell. Res. 77, 1637–1696 (2023)

    Article  MathSciNet  Google Scholar 

  44. Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13675-7_14

    Chapter  Google Scholar 

  45. Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering workflow models from event-based data using little thumb. Integrat. Comput.-Aided Eng. 10(2), 151–162 (2003)

    Article  Google Scholar 

  46. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. Fund. Inform. 94, 387–412 (2010)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wil M. P. van der Aalst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van der Aalst, W.M.P., Leemans, S.J.J. (2025). Learning Generalized Stochastic Petri Nets From Event Data. In: Jansen, N., et al. Principles of Verification: Cycling the Probabilistic Landscape . Lecture Notes in Computer Science, vol 15262. Springer, Cham. https://doi.org/10.1007/978-3-031-75778-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75778-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75777-8

  • Online ISBN: 978-3-031-75778-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics