Abstract
We propose urgency programs, a new programming model with support for alternation, imperfect information, and recursion. The novelty are urgency annotations that decorate the (angelic and demonic) choice operators and control the order in which alternation is resolved. We study standard notions of contextual equivalence for urgency programs. Our first main result are fully abstract characterizations of these relations based on sound and complete axiomatizations. Our second main result settles their computability via a normal form construction. Notably, we show that the contextual preorder is (\(2\textsf{h}-1\))-EXPTIME-complete for programs of maximal urgency \(\textsf{h}\) when the regular observable is given as an input resp. PTIME-complete when the regular observable is fixed. We designed urgency programs as a framework in which it is convenient to formulate and study verification and synthesis problems. We demonstrate this on a number of examples including the verification of concurrent and recursive programs and hyper model checking.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Batz, K., Kaminski, B.L., Katoen, J., Matheja, C., Noll, T.: Quantitative separation logic: a logic for reasoning about probabilistic pointer programs. PACMPL 3(POPL), 34:1-34:29 (2019)
Batz, K., Kaminski, B.L., Katoen, J., Matheja, C.: Relatively complete verification of probabilistic programs: an expressive language for expectation-based reasoning. PACMPL 5(POPL), 1–30 (2021)
Batz, K., Gallus, A., Kaminski, B.L., Katoen, J., Winkler, T.: Weighted programming: a programming paradigm for specifying mathematical models. PACMPL 6(OOPSLA1), 1–30 (2022)
Batz, K., Kaminski, B.L., Katoen, J., Matheja, C., Verscht, L.: A calculus for amortized expected runtimes. PACMPL 7(POPL), 1957–1986 (2023)
Schröer, P., Batz, K., Kaminski, B.L., Katoen, J., Matheja, C.: A deductive verification infrastructure for probabilistic programs. PACMPL 7(OOPSLA2), 2052–2082 (2023)
Feng, S., Chen, M., Su, H., Kaminski, B.L., Katoen, J., Zhan, N.: Lower bounds for possibly divergent probabilistic programs. PACMPL 7(OOPSLA1), 696–726 (2023)
Batz, K., Biskup, T.J., Katoen, J., Winkler, T.: Programmatic strategy synthesis: resolving nondeterminism in probabilistic programs. PACMPL 8(POPL), 2792–2820 (2024)
Terui, K.: Semantic evaluation, intersection types and complexity of simply typed lambda calculus. In: RTA, ser. LIPIcs, vol. 15. Dagstuhl, pp. 323–338 (2012)
Aehlig, K.: A finite semantics of simply-typed lambda terms for infinite runs of automata. LMCS 3(3) (2007)
Salvati, S., Walukiewicz, I.: Using models to model-check recursive schemes. LMCS 11(2) (2015)
Milner, R.: An algebraic definition of simulation between programs. In: IJCAI. Kaufmann, pp. 481–489 (1971)
Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977)
Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS, pp. 332–344. IEEE (1986)
Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: FOCS, pp. 368–377. IEEE (1991)
Milner, R.: Fully abstract models of typed \(\lambda \)-calculi. TCS 4(1), 1–22 (1977)
Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. JACM 28(1), 114–133 (1981)
Reif, J.H.: The complexity of two-player games of incomplete information. JCSS 29(2), 274–301 (1984)
Bozzelli, L.: New results on pushdown module checking with imperfect information. In: GandALF, ser. EPTCS, vol. 54, pp. 162–177 (2011)
Jaber, G., Murawski, A.S.: Complete trace models of state and control. In: ESOP 2021. LNCS, vol. 12648, pp. 348–374. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72019-3_13
Seth, A.: Games on multi-stack pushdown systems. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 395–408. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92687-0_27
Clarkson, M.R., Schneider, F.B.: Hyperproperties. JCS 18(6), 1157–1210 (2010)
Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez, C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54792-8_15
Keskin, E., Meyer, R., van der Wall, S.: Urgency annotations for alternating choices. https://arxiv.org/abs/2305.02967
Martin, D.A.: Borel determinacy. AMATH 102(2), 363–371 (1975)
Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. JACM 32(1), 137–161 (1985)
Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra. Elsevier (2001)
Birkhoff, G.: Lattice Theory. AMS (1967)
Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J. Res. Dev. 3(2), 114–125 (1959)
Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1_7
Meyer, R., van der Wall, S.: On the complexity of multi-pushdown games. In: FSTTCS, ser. LIPIcs, vol. 182, pp. 52:1–52:35. Dagstuhl (2020)
Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecidable. TOPLAS 22(2), 416–430 (2000)
Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition. In: CSFW, pp. 100–114. IEEE (2004)
Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking HyperLTL and HyperCTL\(^*\). In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_3
Gutsfeld, J.O., Müller-Olm, M., Ohrem, C.: Deciding asynchronous hyperproperties for recursive programs. CoRR, vol. abs/2201.12859 (2022)
Bajwa, A., Zhang, M., Chadha, R., Viswanathan, M.: Stack-aware hyperproperties. In: Sankaranarayanan, S., Sharygina, N. (eds.) TACAS 2023. LNCS, vol. 13993, pp. 308–325. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30823-9_16
Rabe, M.N.: A temporal logic approach to information-flow control. Ph.D. dissertation, Saarland University (2016)
Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. New York Univ. Comput. Sci. Dept, New York, NY (1978)
Walukiewicz, I.: Pushdown processes: games and model-checking. IC 164(2), 234–263 (2001)
Holík, L., Meyer, R., Muskalla, S.: Summaries for context-free games. In: FSTTCS, ser. LIPIcs, vol. 65. Dagstuhl, pp. 41:1–41:16 (2016)
Hague, M., Meyer, R., Muskalla, S., Zimmermann, M.: Parity to safety in polynomial time for pushdown and collapsible pushdown systems. In: MFCS, ser. LIPIcs, vol. 117, pp. 57:1–57:15. Dagstuhl (2018)
Cleaveland, R., Lüttgen, G., Natarajan, V.: Priority in process algebra. In: Handbook of Process Algebra, pp. 711–765. Elsevier (2001)
Chandra, A.K., Stockmeyer, L.J.: Alternation. In: FOCS, pp. 98–108. IEEE (1976)
Salomaa, A.: Two complete axiom systems for the algebra of regular events. JACM 13(1), 158–169 (1966)
Milner, R.: A complete inference system for a class of regular behaviours. JCSS 28(3), 439–466 (1984)
Pitts, A., Stark, I.: Operational reasoning for functions with local state. In: Higher Order Operational Techniques in Semantics, pp. 227–273. CUP (1998)
McNaughton, R., Papert, S.A.: Counter-Free Automata. MIT Press (1971)
Pommellet, A., Touili, T.: Model-checking HyperLTL for pushdown systems. In: Gallardo, M.M., Merino, P. (eds.) SPIN 2018. LNCS, vol. 10869, pp. 133–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94111-0_8
Aminof, B., Legay, A., Murano, A., Serre, O., Vardi, M.Y.: Pushdown module checking with imperfect information. IC 223, 1–17 (2013)
Salvati, S., Walukiewicz, I.: A model for behavioural properties of higher-order programs. In: CSL, ser. LIPIcs, vol. 41, pp. 229–243. Dagstuhl (2015)
Wilke, T.: An algebraic theory for regular languages of finite and infinite words. Algebra Compu. 3(4), 447–489 (1993)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Keskin, E., Meyer, R., van der Wall, S. (2025). Urgency Annotations for Alternating Choices. In: Jansen, N., et al. Principles of Verification: Cycling the Probabilistic Landscape . Lecture Notes in Computer Science, vol 15262. Springer, Cham. https://doi.org/10.1007/978-3-031-75778-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-75778-5_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75777-8
Online ISBN: 978-3-031-75778-5
eBook Packages: Computer ScienceComputer Science (R0)