Skip to main content

Urgency Annotations for Alternating Choices

  • Chapter
  • First Online:
Principles of Verification: Cycling the Probabilistic Landscape

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15262))

  • 126 Accesses

Abstract

We propose urgency programs, a new programming model with support for alternation, imperfect information, and recursion. The novelty are urgency annotations that decorate the (angelic and demonic) choice operators and control the order in which alternation is resolved. We study standard notions of contextual equivalence for urgency programs. Our first main result are fully abstract characterizations of these relations based on sound and complete axiomatizations. Our second main result settles their computability via a normal form construction. Notably, we show that the contextual preorder is (\(2\textsf{h}-1\))-EXPTIME-complete for programs of maximal urgency \(\textsf{h}\) when the regular observable is given as an input resp. PTIME-complete when the regular observable is fixed. We designed urgency programs as a framework in which it is convenient to formulate and study verification and synthesis problems. We demonstrate this on a number of examples including the verification of concurrent and recursive programs and hyper model checking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Batz, K., Kaminski, B.L., Katoen, J., Matheja, C., Noll, T.: Quantitative separation logic: a logic for reasoning about probabilistic pointer programs. PACMPL 3(POPL), 34:1-34:29 (2019)

    Google Scholar 

  2. Batz, K., Kaminski, B.L., Katoen, J., Matheja, C.: Relatively complete verification of probabilistic programs: an expressive language for expectation-based reasoning. PACMPL 5(POPL), 1–30 (2021)

    Google Scholar 

  3. Batz, K., Gallus, A., Kaminski, B.L., Katoen, J., Winkler, T.: Weighted programming: a programming paradigm for specifying mathematical models. PACMPL 6(OOPSLA1), 1–30 (2022)

    Google Scholar 

  4. Batz, K., Kaminski, B.L., Katoen, J., Matheja, C., Verscht, L.: A calculus for amortized expected runtimes. PACMPL 7(POPL), 1957–1986 (2023)

    Google Scholar 

  5. Schröer, P., Batz, K., Kaminski, B.L., Katoen, J., Matheja, C.: A deductive verification infrastructure for probabilistic programs. PACMPL 7(OOPSLA2), 2052–2082 (2023)

    Google Scholar 

  6. Feng, S., Chen, M., Su, H., Kaminski, B.L., Katoen, J., Zhan, N.: Lower bounds for possibly divergent probabilistic programs. PACMPL 7(OOPSLA1), 696–726 (2023)

    Google Scholar 

  7. Batz, K., Biskup, T.J., Katoen, J., Winkler, T.: Programmatic strategy synthesis: resolving nondeterminism in probabilistic programs. PACMPL 8(POPL), 2792–2820 (2024)

    Google Scholar 

  8. Terui, K.: Semantic evaluation, intersection types and complexity of simply typed lambda calculus. In: RTA, ser. LIPIcs, vol. 15. Dagstuhl, pp. 323–338 (2012)

    Google Scholar 

  9. Aehlig, K.: A finite semantics of simply-typed lambda terms for infinite runs of automata. LMCS 3(3) (2007)

    Google Scholar 

  10. Salvati, S., Walukiewicz, I.: Using models to model-check recursive schemes. LMCS 11(2) (2015)

    Google Scholar 

  11. Milner, R.: An algebraic definition of simulation between programs. In: IJCAI. Kaufmann, pp. 481–489 (1971)

    Google Scholar 

  12. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977)

    Google Scholar 

  13. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS, pp. 332–344. IEEE (1986)

    Google Scholar 

  14. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: FOCS, pp. 368–377. IEEE (1991)

    Google Scholar 

  15. Milner, R.: Fully abstract models of typed \(\lambda \)-calculi. TCS 4(1), 1–22 (1977)

    Article  MathSciNet  Google Scholar 

  16. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. JACM 28(1), 114–133 (1981)

    Article  MathSciNet  Google Scholar 

  17. Reif, J.H.: The complexity of two-player games of incomplete information. JCSS 29(2), 274–301 (1984)

    MathSciNet  Google Scholar 

  18. Bozzelli, L.: New results on pushdown module checking with imperfect information. In: GandALF, ser. EPTCS, vol. 54, pp. 162–177 (2011)

    Google Scholar 

  19. Jaber, G., Murawski, A.S.: Complete trace models of state and control. In: ESOP 2021. LNCS, vol. 12648, pp. 348–374. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72019-3_13

    Chapter  Google Scholar 

  20. Seth, A.: Games on multi-stack pushdown systems. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 395–408. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92687-0_27

    Chapter  Google Scholar 

  21. Clarkson, M.R., Schneider, F.B.: Hyperproperties. JCS 18(6), 1157–1210 (2010)

    Article  Google Scholar 

  22. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez, C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54792-8_15

    Chapter  Google Scholar 

  23. Keskin, E., Meyer, R., van der Wall, S.: Urgency annotations for alternating choices. https://arxiv.org/abs/2305.02967

  24. Martin, D.A.: Borel determinacy. AMATH 102(2), 363–371 (1975)

    MathSciNet  Google Scholar 

  25. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. JACM 32(1), 137–161 (1985)

    Article  MathSciNet  Google Scholar 

  26. Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra. Elsevier (2001)

    Google Scholar 

  27. Birkhoff, G.: Lattice Theory. AMS (1967)

    Google Scholar 

  28. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J. Res. Dev. 3(2), 114–125 (1959)

    Article  MathSciNet  Google Scholar 

  29. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1_7

    Chapter  Google Scholar 

  30. Meyer, R., van der Wall, S.: On the complexity of multi-pushdown games. In: FSTTCS, ser. LIPIcs, vol. 182, pp. 52:1–52:35. Dagstuhl (2020)

    Google Scholar 

  31. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecidable. TOPLAS 22(2), 416–430 (2000)

    Article  Google Scholar 

  32. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition. In: CSFW, pp. 100–114. IEEE (2004)

    Google Scholar 

  33. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking HyperLTL and HyperCTL\(^*\). In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_3

    Chapter  Google Scholar 

  34. Gutsfeld, J.O., Müller-Olm, M., Ohrem, C.: Deciding asynchronous hyperproperties for recursive programs. CoRR, vol. abs/2201.12859 (2022)

    Google Scholar 

  35. Bajwa, A., Zhang, M., Chadha, R., Viswanathan, M.: Stack-aware hyperproperties. In: Sankaranarayanan, S., Sharygina, N. (eds.) TACAS 2023. LNCS, vol. 13993, pp. 308–325. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30823-9_16

    Chapter  Google Scholar 

  36. Rabe, M.N.: A temporal logic approach to information-flow control. Ph.D. dissertation, Saarland University (2016)

    Google Scholar 

  37. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. New York Univ. Comput. Sci. Dept, New York, NY (1978)

    Google Scholar 

  38. Walukiewicz, I.: Pushdown processes: games and model-checking. IC 164(2), 234–263 (2001)

    MathSciNet  Google Scholar 

  39. Holík, L., Meyer, R., Muskalla, S.: Summaries for context-free games. In: FSTTCS, ser. LIPIcs, vol. 65. Dagstuhl, pp. 41:1–41:16 (2016)

    Google Scholar 

  40. Hague, M., Meyer, R., Muskalla, S., Zimmermann, M.: Parity to safety in polynomial time for pushdown and collapsible pushdown systems. In: MFCS, ser. LIPIcs, vol. 117, pp. 57:1–57:15. Dagstuhl (2018)

    Google Scholar 

  41. Cleaveland, R., Lüttgen, G., Natarajan, V.: Priority in process algebra. In: Handbook of Process Algebra, pp. 711–765. Elsevier (2001)

    Google Scholar 

  42. Chandra, A.K., Stockmeyer, L.J.: Alternation. In: FOCS, pp. 98–108. IEEE (1976)

    Google Scholar 

  43. Salomaa, A.: Two complete axiom systems for the algebra of regular events. JACM 13(1), 158–169 (1966)

    Article  MathSciNet  Google Scholar 

  44. Milner, R.: A complete inference system for a class of regular behaviours. JCSS 28(3), 439–466 (1984)

    MathSciNet  Google Scholar 

  45. Pitts, A., Stark, I.: Operational reasoning for functions with local state. In: Higher Order Operational Techniques in Semantics, pp. 227–273. CUP (1998)

    Google Scholar 

  46. McNaughton, R., Papert, S.A.: Counter-Free Automata. MIT Press (1971)

    Google Scholar 

  47. Pommellet, A., Touili, T.: Model-checking HyperLTL for pushdown systems. In: Gallardo, M.M., Merino, P. (eds.) SPIN 2018. LNCS, vol. 10869, pp. 133–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94111-0_8

    Chapter  Google Scholar 

  48. Aminof, B., Legay, A., Murano, A., Serre, O., Vardi, M.Y.: Pushdown module checking with imperfect information. IC 223, 1–17 (2013)

    MathSciNet  Google Scholar 

  49. Salvati, S., Walukiewicz, I.: A model for behavioural properties of higher-order programs. In: CSL, ser. LIPIcs, vol. 41, pp. 229–243. Dagstuhl (2015)

    Google Scholar 

  50. Wilke, T.: An algebraic theory for regular languages of finite and infinite words. Algebra Compu. 3(4), 447–489 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eren Keskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keskin, E., Meyer, R., van der Wall, S. (2025). Urgency Annotations for Alternating Choices. In: Jansen, N., et al. Principles of Verification: Cycling the Probabilistic Landscape . Lecture Notes in Computer Science, vol 15262. Springer, Cham. https://doi.org/10.1007/978-3-031-75778-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75778-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75777-8

  • Online ISBN: 978-3-031-75778-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics