Skip to main content

Static Slicing for Probabilistic Programs: An Overview

  • Chapter
  • First Online:
Principles of Verification: Cycling the Probabilistic Landscape

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15260))

  • 174 Accesses

Abstract

Program slicing aims to simplify programs by identifying and removing non-essential parts while preserving program behavior. It is widely used for program understanding, debugging, and software maintenance. This paper provides an overview of slicing techniques for probabilistic programs, which blend traditional programming constructs with random sampling and conditioning. These programs have experienced a notable resurgence in recent years due to new applications in fields such as differential privacy and artificial intelligence.

We particularly focus on backward static slicing techniques, the most traditional form of program slicing. We review the foundational technique by Hur et al. and the subsequent developments by Amtoft and Banerjee, based on probabilistic control flow graphs. Through motivating examples and sketches of key definitions and results, we provide a clear, accessible, and self-contained presentation of slicing techniques for probabilistic programs.

This is partially funded by ANID Millennium Science Initiative Program code ICN17_002.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Formally, Amtoft and Banerjee adopt a variation of the notion of weakly control-closed set from [8], which always regards the exit node as “visible” and requires that all nodes outside Q—not only those reachable from Q—admit a next visible.

  2. 2.

    Formally, \(x \in \textsf{rv} _{Q}\left( n ' \right) \) iff there exists a path in the pCFG from \(n '\) to a node \(n '' \in Q\) such that \(n ''\) uses (i.e. reads) x and x is not defined (i.e. assigned) by any node in the path, except, possibly by \(n ''\).

References

  1. Amtoft, T.: Slicing for modern program structures: a theory for eliminating irrelevant loops. Inf. Process. Lett. 106(2), 45–51 (2008)

    Article  MathSciNet  Google Scholar 

  2. Amtoft, T., Banerjee, A.: A theory of slicing for probabilistic control flow graphs. In: Jacobs, B., Löding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 180–196. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49630-5_11

    Chapter  Google Scholar 

  3. Amtoft, T., Banerjee, A.: A theory of slicing for imperative probabilistic programs. ACM Trans. Program. Lang. Syst. 42(2) (2020)

    Google Scholar 

  4. Bichsel, B., Gehr, T., Vechev, M.: Fine-grained semantics for probabilistic programs. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 145–185. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89884-1_6

    Chapter  Google Scholar 

  5. Bingham, E., et al.: Pyro: deep universal probabilistic programming. J. Mach. Learn. Res. (2018)

    Google Scholar 

  6. Binkley, D.W., Gallagher, K.B.: Program slicing. Adv. Comput. 43, 1–50 (1996)

    Article  Google Scholar 

  7. Comuzzi, J.J., Hart, J.M.: Program slicing using weakest preconditions. In: Gaudel, M.-C., Woodcock, J. (eds.) FME 1996. LNCS, vol. 1051, pp. 557–575. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60973-3_107

    Chapter  Google Scholar 

  8. Danicic, S., Barraclough, R.W., Harman, M., Howroyd, J., Kiss, Á., Laurence, M.R.: A unifying theory of control dependence and its application to arbitrary program structures. Theor. Comput. Sci. 412(49), 6809–6842 (2011)

    Article  MathSciNet  Google Scholar 

  9. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1

    Chapter  Google Scholar 

  10. Gelman, A., Lee, D., Guo, J.: Stan: a probabilistic programming language for Bayesian inference and optimization. J. Educ. Behav. Stat. 40(5), 530–543 (2015)

    Article  Google Scholar 

  11. Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nature 521(7553), 452–459 (2015)

    Article  Google Scholar 

  12. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Article  MathSciNet  Google Scholar 

  13. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church: a language for generative models. In: Proceedings of UAI, pp. 220–229. AUAI Press (2008)

    Google Scholar 

  14. Goodman, N.D., Stuhlmüller, A.: The Design and Implementation of Probabilistic Programming Languages (2014). http://dippl.org. Accessed 3 May 2024

  15. Hur, C.K., Nori, A.V., Rajamani, S.K., Samuel, S.: Slicing probabilistic programs. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2014, pp. 133–144. ACM (2014)

    Google Scholar 

  16. Kaminski, B.L., Katoen, J., Matheja, C., Olmedo, F.: Weakest precondition reasoning for expected runtimes of randomized algorithms. J. ACM 65(5), 30:1–30:68 (2018)

    Google Scholar 

  17. Katoen, J.-P., Gretz, F., Jansen, N., Kaminski, B.L., Olmedo, F.: Understanding probabilistic programs. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 15–32. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23506-6_4

    Chapter  Google Scholar 

  18. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    Google Scholar 

  19. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–350 (1981)

    Article  MathSciNet  Google Scholar 

  20. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems. Monographs in Computer Science. Springer, New York (2005). https://doi.org/10.1007/b138392. ISBN 978-0-387-40115-7

  21. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  22. Navarro, M., Olmedo, F.: Slicing of probabilistic programs based on specifications. Sci. Comput. Program. 220, 102822 (2022)

    Google Scholar 

  23. Navarro, M., Olmedo, F.: Slicing of probabilistic programs based on specifications (extended abstract). In: Ali, K., Vitek, J. (eds.) 36th European Conference on Object-Oriented Programming, ECOOP 2022, 6–10 June 2022, Berlin, Germany. LIPIcs, vol. 222, pp. 34:1–34:2, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

    Google Scholar 

  24. Olmedo, F., Gretz, F., Jansen, N., Kaminski, B.L., Katoen, J.P., Mciver, A.: Conditioning in probabilistic programming. ACM Trans. Program. Lang. Syst. (TOPLAS) 40(1), 4:1–4:50 (2018)

    Google Scholar 

  25. Podgurski, A., Clarke, L.A.: A formal model of program dependences and its implications for software testing, debugging, and maintenance. IEEE Trans. Software Eng. 16(9), 965–979 (1990)

    Article  Google Scholar 

  26. Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.: A new foundation for control dependence and slicing for modern program structures. ACM Trans. Program. Lang. Syst. 29(5), 27 (2007)

    Article  Google Scholar 

  27. Tip, F.: A survey of program slicing techniques. J. Program. Lang. 3(3) (1995)

    Google Scholar 

  28. Tran, D., Kucukelbir, A., Dieng, A.B., Rudolph, M., Liang, D., Blei, D.M.: Edward: a library for probabilistic modeling, inference, and criticism. arXiv preprint arXiv:1610.09787 (2016)

  29. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference on Software Engineering, ICSE 1981, pp. 439–449. IEEE Press (1981)

    Google Scholar 

  30. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing. ACM SIGSOFT Softw. Eng. Notes 30(2), 1–36 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Olmedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olmedo, F. (2025). Static Slicing for Probabilistic Programs: An Overview. In: Jansen, N., et al. Principles of Verification: Cycling the Probabilistic Landscape. Lecture Notes in Computer Science, vol 15260. Springer, Cham. https://doi.org/10.1007/978-3-031-75783-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75783-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75782-2

  • Online ISBN: 978-3-031-75783-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics