Abstract
Program slicing aims to simplify programs by identifying and removing non-essential parts while preserving program behavior. It is widely used for program understanding, debugging, and software maintenance. This paper provides an overview of slicing techniques for probabilistic programs, which blend traditional programming constructs with random sampling and conditioning. These programs have experienced a notable resurgence in recent years due to new applications in fields such as differential privacy and artificial intelligence.
We particularly focus on backward static slicing techniques, the most traditional form of program slicing. We review the foundational technique by Hur et al. and the subsequent developments by Amtoft and Banerjee, based on probabilistic control flow graphs. Through motivating examples and sketches of key definitions and results, we provide a clear, accessible, and self-contained presentation of slicing techniques for probabilistic programs.
This is partially funded by ANID Millennium Science Initiative Program code ICN17_002.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Formally, Amtoft and Banerjee adopt a variation of the notion of weakly control-closed set from [8], which always regards the exit node as “visible” and requires that all nodes outside Q—not only those reachable from Q—admit a next visible.
- 2.
Formally, \(x \in \textsf{rv} _{Q}\left( n ' \right) \) iff there exists a path in the pCFG from \(n '\) to a node \(n '' \in Q\) such that \(n ''\) uses (i.e. reads) x and x is not defined (i.e. assigned) by any node in the path, except, possibly by \(n ''\).
References
Amtoft, T.: Slicing for modern program structures: a theory for eliminating irrelevant loops. Inf. Process. Lett. 106(2), 45–51 (2008)
Amtoft, T., Banerjee, A.: A theory of slicing for probabilistic control flow graphs. In: Jacobs, B., Löding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 180–196. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49630-5_11
Amtoft, T., Banerjee, A.: A theory of slicing for imperative probabilistic programs. ACM Trans. Program. Lang. Syst. 42(2) (2020)
Bichsel, B., Gehr, T., Vechev, M.: Fine-grained semantics for probabilistic programs. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 145–185. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89884-1_6
Bingham, E., et al.: Pyro: deep universal probabilistic programming. J. Mach. Learn. Res. (2018)
Binkley, D.W., Gallagher, K.B.: Program slicing. Adv. Comput. 43, 1–50 (1996)
Comuzzi, J.J., Hart, J.M.: Program slicing using weakest preconditions. In: Gaudel, M.-C., Woodcock, J. (eds.) FME 1996. LNCS, vol. 1051, pp. 557–575. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60973-3_107
Danicic, S., Barraclough, R.W., Harman, M., Howroyd, J., Kiss, Á., Laurence, M.R.: A unifying theory of control dependence and its application to arbitrary program structures. Theor. Comput. Sci. 412(49), 6809–6842 (2011)
Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1
Gelman, A., Lee, D., Guo, J.: Stan: a probabilistic programming language for Bayesian inference and optimization. J. Educ. Behav. Stat. 40(5), 530–543 (2015)
Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nature 521(7553), 452–459 (2015)
Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)
Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church: a language for generative models. In: Proceedings of UAI, pp. 220–229. AUAI Press (2008)
Goodman, N.D., Stuhlmüller, A.: The Design and Implementation of Probabilistic Programming Languages (2014). http://dippl.org. Accessed 3 May 2024
Hur, C.K., Nori, A.V., Rajamani, S.K., Samuel, S.: Slicing probabilistic programs. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2014, pp. 133–144. ACM (2014)
Kaminski, B.L., Katoen, J., Matheja, C., Olmedo, F.: Weakest precondition reasoning for expected runtimes of randomized algorithms. J. ACM 65(5), 30:1–30:68 (2018)
Katoen, J.-P., Gretz, F., Jansen, N., Kaminski, B.L., Olmedo, F.: Understanding probabilistic programs. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 15–32. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23506-6_4
Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)
Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–350 (1981)
McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems. Monographs in Computer Science. Springer, New York (2005). https://doi.org/10.1007/b138392. ISBN 978-0-387-40115-7
Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)
Navarro, M., Olmedo, F.: Slicing of probabilistic programs based on specifications. Sci. Comput. Program. 220, 102822 (2022)
Navarro, M., Olmedo, F.: Slicing of probabilistic programs based on specifications (extended abstract). In: Ali, K., Vitek, J. (eds.) 36th European Conference on Object-Oriented Programming, ECOOP 2022, 6–10 June 2022, Berlin, Germany. LIPIcs, vol. 222, pp. 34:1–34:2, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)
Olmedo, F., Gretz, F., Jansen, N., Kaminski, B.L., Katoen, J.P., Mciver, A.: Conditioning in probabilistic programming. ACM Trans. Program. Lang. Syst. (TOPLAS) 40(1), 4:1–4:50 (2018)
Podgurski, A., Clarke, L.A.: A formal model of program dependences and its implications for software testing, debugging, and maintenance. IEEE Trans. Software Eng. 16(9), 965–979 (1990)
Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.: A new foundation for control dependence and slicing for modern program structures. ACM Trans. Program. Lang. Syst. 29(5), 27 (2007)
Tip, F.: A survey of program slicing techniques. J. Program. Lang. 3(3) (1995)
Tran, D., Kucukelbir, A., Dieng, A.B., Rudolph, M., Liang, D., Blei, D.M.: Edward: a library for probabilistic modeling, inference, and criticism. arXiv preprint arXiv:1610.09787 (2016)
Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference on Software Engineering, ICSE 1981, pp. 439–449. IEEE Press (1981)
Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing. ACM SIGSOFT Softw. Eng. Notes 30(2), 1–36 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Olmedo, F. (2025). Static Slicing for Probabilistic Programs: An Overview. In: Jansen, N., et al. Principles of Verification: Cycling the Probabilistic Landscape. Lecture Notes in Computer Science, vol 15260. Springer, Cham. https://doi.org/10.1007/978-3-031-75783-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-75783-9_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75782-2
Online ISBN: 978-3-031-75783-9
eBook Packages: Computer ScienceComputer Science (R0)