Skip to main content

Bayesian Estimation Approaches for Local Intrinsic Dimensionality

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2024)

Abstract

Local Intrinsic Dimensionality (LID) is a measure of data complexity in the vicinity of a query point. In this work, we address the problem of estimating LID from a Bayesian perspective by establishing a theoretical framework that derives the distribution of LID given a data sample. Using this framework, we develop new LID estimators that can outperform the Maximum Likelihood Estimator (MLE) in certain contexts. The framework also provides a convenient way to incorporate prior LID knowledge through informative priors. Additionally, we demonstrate how to aggregate multiple LID distributions in a Bayesian manner using logarithmic pooling. We conduct a variety of experiments, demonstrating that a Bayesian approach to LID is effective with a small number of nearest neighbors and when incorporating informative priors. We also show that in deep neural networks, MLE produces highly volatile LID estimates, whereas a Bayesian approach that incorporates prior LID information smoothes and reduces the variance of these estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amsaleg, L., Chelly, O., Furon, T., Girard, S., Houle, M.E., Kawarabayashi, K., Nett, M.: Extreme-value-theoretic estimation of local intrinsic dimensionality. DMKD (2018)

    Google Scholar 

  2. Anderberg, A., Bailey, J., Campello, R.J.G., Houle, M.E., Marques, H., Radovanović, M., Zimek, A.: Dimensionality-aware outlier detection: theoretical and experimental analysis. In: (SDM24) (2024)

    Google Scholar 

  3. Bailey, J., Houle, M., Ma, X.: Local intrinsic dimensionality, entropy and statistical divergences. Ent. (2022). https://doi.org/10.3390/e24091220

    Article  MathSciNet  Google Scholar 

  4. Brown, L.: Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters. Ann. Math. Stat. 39(1), 29–48 (1968)

    Article  MathSciNet  Google Scholar 

  5. Campadelli, P., Casiraghi, E., Ceruti, C., Rozza, A.: Intrinsic dimension estimation: relevant techniques and a benchmark framework. Math. Probl. Eng. 2015, 1–21 (2015)

    Article  MathSciNet  Google Scholar 

  6. Denti, F., Doimo, D., Laio, A., Mira, A.: The generalized ratios intrinsic dimension estimator. Sci. Rep. 12(1) (2022)

    Google Scholar 

  7. Facco, E., d’Errico, M., Rodriguez, A., Laio, A.: Estimating the intrinsic dimension of datasets by a minimal neighborhood info. Sci. Rep. (2017)

    Google Scholar 

  8. Hill, B.M.: A simple general approach to inference about the tail of a distribution. 3(5), 1163–1174 (1975)

    Google Scholar 

  9. Houle, M.E.: Dimensionality, discriminability, density and distance distributions. In: ICDMW13, pp. 468–473 (2013)

    Google Scholar 

  10. Houle, M.E.: Local intrinsic dimensionality I: an extreme-value-theoretic foundation for similarity applications. In: SISAP, pp. 64–79 (2017)

    Google Scholar 

  11. Huang, H., Campello, R.J.G.B., Erfani, S.M., Ma, X., Houle, M.E., Bailey, J.: LDReg: Local dimensionality regularized self-supervised learning. ICLR 24 . 10.48550/arXiv.2401.10474

    Google Scholar 

  12. Ibrahim, J.G., Chen, M., Gwon, Y., Chen, F.: The power prior: theory and applications. Stat. Med. 34(28), 3724–3749 (2015)

    Article  MathSciNet  Google Scholar 

  13. James, W., Stein, C.: Estimation with quadratic loss (1992). https://doi.org/10.1007/978-1-4612-0919-5_30

  14. Jeffreys, H.: An invariant form for the prior probability in estimation problems. Proc. R. Soc. Lond. A 186(1007), 453–461 (1946)

    Article  MathSciNet  Google Scholar 

  15. Jolliffe, I.T.: Principal Component Analysis. Springer (2002)

    Google Scholar 

  16. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  17. Levina, E., Bickel, P.J.: Maximum likelihood estimation of intrinsic dimension. In: NeurIPS (2004)

    Google Scholar 

  18. Ma, X., et al: Characterizing adversarial subspaces using local intrinsic dimensionality. In: ICLR (2018)

    Google Scholar 

  19. Ma, X., Wang, Y., Houle, M.E., Zhou, S., Erfani, S.M., Xia, S., Wijewickrema, S.N.R., Bailey, J.: Dimensionality-driven learning with noisy labels. In: ICML (2018)

    Google Scholar 

  20. Neyman, E., Roughgarden, T.: From proper scoring rules to max-min optimal forecast aggregation. In: EC ’21, p. 734. ACM (2021)

    Google Scholar 

  21. Rozza, A., Lombardi, G., Ceruti, C., Casiraghi, E., Campadelli, P.: Novel high intrinsic dimensionality estimators. Mach. Learn. (2012)

    Google Scholar 

  22. Thordsen, E., Schubert, E.: ABID: angle based intrinsic dimensionality-theory and analysis. Inf. Syst. 108, 101989 (2022)

    Article  Google Scholar 

  23. Tordesillas, A., Zhou, S., Bailey, J., Bondell, H.: A representation learning framework for detection and characterization of dead versus strain localization zones from pre-to post-failure. Gra, Mat (2022)

    Book  Google Scholar 

  24. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR (2018)

    Google Scholar 

  25. Zhou, S., Tordesillas, A., Pouragha, M., Bailey, J., Bondell, H.: On local intrinsic dimensionality of deformation in complex materials. Nat. Sci. Rep. 11(10216) (2021). https://doi.org/10.1038/s41598-021-89328-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaher Joukhadar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joukhadar, Z., Huang, H., Erfani, S.M., Campello, R.J.G.B., Houle, M.E., Bailey, J. (2025). Bayesian Estimation Approaches for Local Intrinsic Dimensionality. In: Chávez, E., Kimia, B., Lokoč, J., Patella, M., Sedmidubsky, J. (eds) Similarity Search and Applications. SISAP 2024. Lecture Notes in Computer Science, vol 15268. Springer, Cham. https://doi.org/10.1007/978-3-031-75823-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75823-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75822-5

  • Online ISBN: 978-3-031-75823-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics