Abstract
Reinforcement learning (RL) is an important class of machine learning techniques, in which intelligent agents optimize their behavior by observing and evaluating the outcomes of their repeated interactions with their environment. A key to successfully engineering such agents is to provide them with the opportunity to engage in a large number of such interactions safely and at a low cost. This is often achieved through developing simulators of such interactions, in which the agents can be trained while also different training strategies and parameters are explored. However, specifying and implementing such simulators can be a complex endeavor requiring a systematic process for capturing and analyzing both the goals and actions of the agents and the characteristics of the target environment. We propose a framework for model-driven goal-oriented development of RL simulation environments. The framework utilizes a set of extensions to a standard goal modeling notation that allows concise modeling of a large number of ways by which an intelligent agent can interact with its environment. Though subsequent formalization, the model is used by a specially constructed simulation engine to simulate agent behavior, such that off-the-shelf RL algorithms can use it as a training environment. We present the extension of the goal modeling language, sketch its semantics, and show how models built with it can be made executable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Open AI Gym (2022). https://github.com/openai/gym
Abdelzad, V., Amyot, D., Alwidian, S., Lethbridge, T.: A textual syntax with tool support for the goal-oriented requirement language. In: Proceedings of the 8th International i* Workshop (iStar 2015) (2015).https://ceur-ws.org/Vol-1402/paper6.pdf
Ahmad, K., Bano, M., Abdelrazek, M., Arora, C., Grundy, J.: What’s up with requirements engineering for artificial intelligence systems? In: Proceedigns of the 29th IEEE International Requirements Engineering Conference (R 2021), pp. 1–12 (2021). https://doi.org/10.1109/RE51729.2021.00008
Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the next ten years (invited paper). J. Softw. (JSW) 6(5), 747–768 (2011)
Anderson, R.N., Boulanger, A., Powell, W.B., Scott, W.: Adaptive stochastic control for the smart grid. Proc. IEEE 99(6), 1098–1115 (2011). https://doi.org/10.1109/JPROC.2011.2109671
Angelopoulos, K., Papadopoulos, A.V., Silva Souza, V.E., Mylopoulos, J.: Model predictive control for software systems with CobRA. In: Proceedings of the 11th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2016), pp. 35–46. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2897053.2897054
Beck, D., Lakemeyer, G.: Reinforcement learning for Golog programs with first-order state-abstraction. Logic J. IGPL 20(5), 909–942 (2012). https://doi.org/10.1093/jigpal/jzs011
Bencomo, N., Belaggoun, A.: Supporting decision-making for self-adaptive systems: from goal models to dynamic decision networks. In: Doerr, J., Opdahl, A.L. (eds.) REFSQ 2013. LNCS, vol. 7830, pp. 221–236. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37422-7_16
Berry, D.M.: Requirements engineering for artificial intelligence: what is a requirements specification for an artificial intelligence? In: Gervasi, V., Vogelsang, A. (eds.) REFSQ 2022. LNCS, vol. 13216, pp. 19–25. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98464-9_2
Bork, D., Ali, S.J., Roelens, B.: Conceptual modeling and artificial intelligence: A systematic mapping study. The Computing Research Repository (CoRR) abs/2303.0 (2023). https://doi.org/10.48550/arXiv.2303.06758
Bork, D., et al.: 1st workshop on conceptual modeling meets artificial intelligence and data-driven decision making (CMAI 2020). In: Grossmann, G., Ram, S. (eds.) Advances in Conceptual Modeling. ER 2020 Workshops CMAI, CMLS, CMOMM4FAIR, CoMoNoS, EmpER. Vienna, Austria (2020), https://doi.org/10.1007/978-3-030-65847-213
Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level agent programming in the situation calculus. In: Proceedings of the 17th Conference on Artificial Intelligence (AAAI 2000), pp. 355–362. AAAI Press, Austin, TX (2000). https://dl.acm.org/doi/10.5555/647288.721273
Brunotte, W., Chazette, L., Klös, V., Speith, T.: Quo vadis, explainability? – a research roadmap for explainability engineering. In: Gervasi, V., Vogelsang, A. (eds.) REFSQ 2022. LNCS, vol. 13216, pp. 26–32. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98464-9_3
Chazette, L., Brunotte, W., Speith, T.: Exploring explainability: a definition, a model, and a knowledge catalogue. In: Proceedings fo the 29th IEEE International Requirements Engineering Conference (RE 2021), pp. 197–208 (2021). https://doi.org/10.1109/RE51729.2021.00025
Chazette, L., Schneider, K.: Explainability as a non-functional requirement: challenges and recommendations. Requirements Eng. 25(4), 493–514 (2020). https://doi.org/10.1007/s00766-020-00333-1
Cognini, R., Corradini, F., Gnesi, S., Polini, A., Re, B.: Business process flexibility - a systematic literature review with a software systems perspective. Inf. Syst. Front. 20(2), 343–371 (2018). https://doi.org/10.1007/s10796-016-9678-2
Dalpiaz, F., Franch, X., Horkoff, J.: iStar 2.0 Language Guide. The Computing Research Repository (CoRR) abs/1605.0 (2016). http://arxiv.org/abs/1605.07767
Damiani, E., Frati, F.: Towards conceptual models for machine learning computations. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 3–9. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_1
Dell’Anna, D., Dalpiaz, F., Dastani, M.: Validating goal models via bayesian networks. In: Proceedings of the 5th International Workshop on Artificial Intelligence for Requirements Engineering (AIRE 2018), pp. 39–46 (2018). https://doi.org/10.1109/AIRE.2018.00012
Dell’Anna, D., Dalpiaz, F., Dastani, M.: Requirements-driven evolution of sociotechnical systems via probabilistic reasoning and hill climbing. Autom. Softw. Eng. 26(3), 513–557 (2019). https://doi.org/10.1007/s10515-019-00255-5
Durán, F., Rocha, C., Salaün, G.: Stochastic analysis of BPMN with time in rewriting logic. Sci. Comput. Program. 168, 1–17 (2018). https://doi.org/10.1016/j.scico.2018.08.007
Félix Solano, G., Diniz Caldas, R., Nunes Rodrigues, G., Vogel, T., Pelliccione, P.: Taming uncertainty in the assurance process of self-adaptive systems: a goal-oriented approach. In: Proceedings of the 14th IEEE/ACM International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2019), pp. 89–99 (May 2019). https://doi.org/10.1109/SEAMS.2019.00020
Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Formal reasoning techniques for goal models. In: Spaccapietra, S., March, S., Aberer, K. (eds.) Journal on Data Semantics I. LNCS, vol. 2800, pp. 1–20. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39733-5_1
Goldsby, H.J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Hughes, D.: Goal-based modeling of dynamically adaptive system requirements. In: 15th Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems (ecbs 2008), pp. 36–45 (200). https://doi.org/10.1109/ECBS.2008.22
Gonçalves, E., Araujo, J., Castro, J.: iStar4RationalAgents: modeling requirements of multi-agent systems with rational agents. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 558–566. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_46
Gottesman, O., et al.: Guidelines for reinforcement learning in healthcare. Nat. Med. 25(1), 16–18 (2019). https://doi.org/10.1038/s41591-018-0310-5
Habibullah, K.M., Horkoff, J.: Non-functional requirements for machine learning: understanding current use and challenges in industry. In: Proceedings of the 29th IEEE International Requirements Engineering Conference (RE 2021), pp. 13–23 (2021). https://doi.org/10.1109/RE51729.2021.00009
Hartmann, T., Moawad, A., Schockaert, C., Fouquet, F., Le Traon, Y.: Meta-modelling meta-learning. In: Proceedings of the 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems (MODELS 2019), pp. 300–305 (2019). https://doi.org/10.1109/MODELS.2019.00014
Hayes, C.F., et al.: A practical guide to multi-objective reinforcement learning and planning. Auton. Agent. Multi-Agent Syst. 36(1), 26 (2022). https://doi.org/10.1007/s10458-022-09552-y
Heaven, W., Letier, E.: Simulating and optimising design decisions in quantitative goal models. In: Proceedings of the 19th IEEE International Requirements Engineering Conference (RE 2011), pp. 79–88. Trento, Italy (2011). https://doi.org/10.1109/RE.2011.6051653
Herbert, L.T., Hansen, Z.N.L., Jacobsen, P.: SBOAT: a stochastic BPMN analysis and optimisation tool. In: Karlaftis, M.G., Lagaros, N.D., Papadrakakis, M. (eds.) Proceedings of the 1st International Conference on Engineering and Applied Sciences Optimization (OPT-i), pp. 1136–1152. National Technical University of Athens (2014). http://www.opti2014.org/
Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006). https://doi.org/10.1007/11691372_29
Ishikawa, F.: Concepts in quality assessment for machine learning - from test data to arguments. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 536–544. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_39
Kimmig, A., Demoen, B., De Raedt, L., Costa, V.S., Rocha, R.: On the implementation of the probabilistic logic programming language ProbLog. Theory Pract. Logic Program. 11(2–3), 235–262 (2011). https://doi.org/10.1017/S1471068410000566
Kusmenko, E., Nickels, S., Pavlitskaya, S., Rumpe, B., Timmermanns, T.: Modeling and training of neural processing systems. In: Proceedings of the ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems (MODELS 2019), pp. 283–293 (2019). https://doi.org/10.1109/MODELS.2019.00012
Letier, E., van Lamsweerde, A.: Reasoning about partial goal satisfaction for requirements and design engineering. In: Proceedings of the 12th International Symposium on the Foundation of Software Engineering (FSE 2004), pp. 53–62. ACM Press, Newport Beach, CA (Nov 2004). https://doi.org/10.1145/1041685.1029905
Liaskos, S.: Tool support for modeling and reasoning with decision theoretic goal models. CEUR Workshop Proceedings 3618 (2023). https://ceur-ws.org/Vol-3618/pd_paper_2.pdf
Liaskos, S., Golipour, R.: Tool and reproducibility package for: Model-driven design and generation of training simulators for reinforcement learning (2024). https://github.com/cmg-york/RLGen
Liaskos, S., Khan, S.M., Litoiu, M., Jungblut, M.D., Rogozhkin, V., Mylopoulos, J.: Behavioral adaptation of information systems through goal models. Inform. Syst. (IS) 37(8), 767–783 (2012). https://doi.org/10.1016/j.is.2012.05.006
Liaskos, S., Khan, S.M., Mylopoulos, J.: Modeling and reasoning about uncertainty in goal models: a decision-theoretic approach. Softw. Syst. Model. 21, 1–24 (2022). https://doi.org/10.1007/s10270-021-00968-w
Liaskos, S., Khan, S.M., Soutchanski, M., Mylopoulos, J.: Modeling and Reasoning with Decision-Theoretic Goals. In: Proceedings of the 32th International Conference on Conceptual Modeling, (ER 2013), Hong-Kong, China, pp. 19–32 (2013). https://doi.org/10.1007/978-3-642-41924-9_3
Liaskos, S., McIlraith, S.A., Mylopoulos, J.: Towards augmenting requirements models with preferences. In: Proceedings of the 24th IEEE/ACM International Conference on Automated Software Engineering (ASE 2009), pp. 565–569 (2009). https://doi.org/10.1109/ASE.2009.91
Liaskos, S., McIlraith, S.A., Sohrabi, S., Mylopoulos, J.: Integrating preferences into goal models for requirements engineering. In: Proceedings of the 10th IEEE International Requirements Engineering Conference (RE 2010), Sydney, Australia (2010). https://doi.org/10.1109/RE.2010.26
Lima, P., et al.: Scalability of istar: a systematic mapping study. In: Workshop em Engenharia de Requisitos (WER 2016) (2016). https://api.semanticscholar.org/CorpusID:59248836
Liu, W., Wang, Y., Zhou, Q., Li, T.: Graphical modeling vs. textual modeling: an experimental comparison based on istar models. In: Proceedings of the 45th IEEE Annual Computers, Software, and Applications Conference (COMPSAC 2021), pp. 844–853 (2021). https://doi.org/10.1109/COMPSAC51774.2021.00117
Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Proceedings of the 33rd International Conference on Machine Learning (ICML 2016), pp. 1928–1937. JMLR.org (2016). https://dl.acm.org/doi/10.5555/3045390.3045594
Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236
Morandini, M., Penserini, L., Perini, A.: Towards goal-oriented development of self-adaptive systems. In: Proceedings of the 2008 International Workshop on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2008, pp. 9–16. Association for Computing Machinery, New York (2008). https://doi.org/10.1145/1370018.1370021
Mussbacher, G., et al.: Opportunities in intelligent modeling assistance. Softw. Syst. Model. 19(5), 1045–1053 (2020). https://doi.org/10.1007/s10270-020-00814-5
Mylopoulos, J., Chung, L., Liao, S., Wang, H., Yu, E.: Exploring alternatives during requirements analysis. IEEE Softw. 18(1), 92–96 (2001). https://doi.org/10.1109/52.903174
Nalchigar, S., Yu, E.: Business-driven data analytics: a conceptual modeling framework. Data Knowl. Eng. 117, 359–372 (2018). https://doi.org/10.1016/j.datak.2018.04.006
Nalchigar, S., Yu, E., Keshavjee, K.: Modeling machine learning requirements from three perspectives: a case report from the healthcare domain. Requirements Eng. 26(2), 237–254 (2021). https://doi.org/10.1007/s00766-020-00343-z
Nguyen, C.M., Sebastiani, R., Giorgini, P., Mylopoulos, J.: Multi-objective reasoning with constrained goal models. Requirements Eng. 23(2), 189–225 (2018). https://doi.org/10.1007/s00766-016-0263-5
Object Management Group: Business Process Model And Notation (v2.0). Tech. rep. (2011). https://www.omg.org/spec/BPMN/2.0.2/PDF
Pei, Z., Liu, L., Wang, C., Wang, J.: Requirements engineering for machine learning: a review and reflection. In: Proceedings of the 30th IEEE International Requirements Engineering Conference Workshops (REW 2022), pp. 166–175 (2022). https://doi.org/10.1109/REW56159.2022.00039
Pérez-Soler, S., Guerra, E., de Lara, J.: Model-driven chatbot development. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 207–222. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62522-1_15
Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-baselines3: reliable reinforcement learning implementations. J. Mach. Learn. Res. 22(268), 1–8 (2021). http://jmlr.org/papers/v22/20-1364.html
Rao, A., Jelvis, T.: Foundations of Reinforcement Learning with Applications in Finance. Chapman and Hall/CRC (2022)
Reiter, R.: Knowledge in Action. MIT Press, Logical Foundations for Specifying and Implementing Dynamical Systems (2001)
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Policy Optimization Algorithms. The Computing Research Repository (CoRR) (201). https://doi.org/10.48550/arxiv.1707.06347
Soutchanski, M.: High-Level Robot Programming in Dynamic and Incompletely Known Environments. Ph.D. thesis, Department of Computer Science, University of Toronto (2003)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press (2018)
Vogelsang, A., Borg, M.: Requirements engineering for machine learning: perspectives from data scientists. In: Proceedigns of the 6th International Workshop on Artificial Intelligence for Requirements Engineering (AIRE 2019), pp. 245–251 (2019). https://doi.org/10.1109/REW.2019.00050
Wei, H., Zheng, G., Yao, H., Li, Z.: IntelliLight: a reinforcement learning approach for intelligent traffic light control. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD 2018), pp. 2496–2505. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3219819.3220096
Yang, W.C., Marra, G., Rens, G., De Raedt, L.: Safe Reinforcement learning via probabilistic logic shields. In: Proceedings of the 32nd International Joint Conference on Artificial Intelligence (IJCAI 2023), pp. 5739–5749 (2023). https://doi.org/10.24963/ijcai.2023/637
Yohannis, A., Kolovos, D.: Towards model-based bias mitigation in machine learning. Proceedings of the 25th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MODELS 2022), pp. 143–153 (2022). https://doi.org/10.1145/3550355.3552401
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liaskos, S., M. Khan, S., Mylopoulos, J., Golipour, R. (2025). Model-Driven Design and Generation of Training Simulators for Reinforcement Learning. In: Maass, W., Han, H., Yasar, H., Multari, N. (eds) Conceptual Modeling. ER 2024. Lecture Notes in Computer Science, vol 15238. Springer, Cham. https://doi.org/10.1007/978-3-031-75872-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-75872-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75871-3
Online ISBN: 978-3-031-75872-0
eBook Packages: Computer ScienceComputer Science (R0)