Skip to main content

Functional Outcome Prediction in Acute Ischemic Stroke

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2023, SWITCH 2023)

Abstract

BACKGROUND Stroke is one of the most prevalent neurological diseases and causes of disability worldwide. Functional outcome prediction models can assist the treatment decision process and optimize acute ischemic stroke health care. Current models often use a limited set of input features to predict functional outcome, although combining various types of features could improve model performance. Furthermore, they often incorporate follow-up information, while prediction models applicable in the acute setting are desirable. METHODS We trained an ensemble model consisting of five machine learning models with leave-one-out cross-validation to predict the binarized modified Rankin Scale score three months after stroke onset in patients with acute ischemic stroke caused by a large vessel occlusion who received endovascular treatment. We used clinical variables, treatment variables and lesion loads derived from registration of a stroke population-specific neuroanatomical CT brain atlas with the follow-up non-contrast enhanced CT scan as input features. RESULTS Taking into account five performance metrics (accuracy, AUC, sensitivity, specificity and F1-score), the ensemble model and support vector machine (SVM) seemed to achieve the best performances out of the six models (ensemble model and the five individual machine learning models), with AUC values up to 0.76 and 0.77 respectively. The highest accuracy obtained with the ensemble model was 0.69, and with the SVM 0.72. Little variance in performance was found between the various sets of input features. CONCLUSION Although similar performances compared to current literature were obtained, conventional machine learning models might not be sophisticated enough to capture the complex interactions between input features for functional outcome prediction in acute ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alaka, S.A., et al.: Functional outcome prediction in ischemic stroke: a comparison of machine learning algorithms and regression models. Front. Neurol. 11, 889 (2020). https://doi.org/10.3389/fneur.2020.00889

    Article  Google Scholar 

  2. Bang, O.Y., Goyal, M., Liebeskind, D.S.: Collateral circulation in ischemic stroke: assessment tools and therapeutic strategies. Stroke 46(11), 3302–3309 (2015). https://doi.org/10.1161/STROKEAHA.115.010508

    Article  Google Scholar 

  3. Barber, P.A., Demchuk, A.M., Zhang, J., Buchan, A.M.: Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Lancet 355(9216), 1670–1674 (2000). https://doi.org/10.1016/s0140-6736(00)02237-6

    Article  Google Scholar 

  4. Bates, E., et al.: Voxel-based lesion-symptom mapping. Nat. Neurosci. 6(5), 448–450 (2003). https://doi.org/10.1038/nn1050

    Article  Google Scholar 

  5. Béjot, Y., Bailly, H., Durier, J., Giroud, M.: Epidemiology of stroke in Europe and trends for the 21st century. La Presse Médicale 45(12), e391–e398 (2016). https://doi.org/10.1016/j.lpm.2016.10.003

    Article  Google Scholar 

  6. Berkhemer, O.A., et al.: A randomized trial of intraarterial treatment for acute ischemic stroke. NEJM 372, 11–20 (2015). https://doi.org/10.1056/NEJMoa1411587

    Article  Google Scholar 

  7. Bertels, J.: Understanding final infarct prediction in acute ischemic stroke using convolutional neural networks. Ph.D. thesis, KU Leuven (2022). https://lirias.kuleuven.be/3838597?limo=0

  8. Black-Schaffer, R.M., Winston, C.: Age and functional outcome after stroke. Top. Stroke Rehabil. 11(2), 23–32 (2004). https://doi.org/10.1310/DNJU-9VUH-BXU2-DJYU

    Article  Google Scholar 

  9. Boers, A.M., et al.: Automated cerebral infarct volume measurement in follow-up noncontrast CT scans of patients with acute ischemic stroke. Am. J. Neuroradiol. 34(8), 1522–1527 (2013). https://doi.org/10.3174/ajnr.A3463

    Article  Google Scholar 

  10. Brugnara, G., et al.: Multimodal predictive modeling of endovascular treatment outcome for acute ischemic stroke using machine-learning. Stroke 51(12), 3541–3551 (2020). https://doi.org/10.1161/STROKEAHA.120.030287

    Article  Google Scholar 

  11. Bucker, A., et al.: Associations of ischemic lesion volume with functional outcome in patients with acute ischemic stroke: 24-hour versus 1-week imaging. Stroke 48(5), 1233–1240 (2017). https://doi.org/10.1161/STROKEAHA.116.015156

    Article  Google Scholar 

  12. Cheng, B., et al.: Influence of stroke infarct location on functional outcome measured by the modified Rankin Scale. Stroke 45(6), 1695–1702 (2014). https://doi.org/10.1161/STROKEAHA.114.005152

    Article  Google Scholar 

  13. Chollet, F., et al.: Keras (2015). https://keras.io. Accessed 20 June 2023

  14. Dargazanli, C., et al.: Impact of modified TICI 3 versus modified TICI 2b reperfusion score to predict good outcome following endovascular therapy. Am. J. Neuroradiol. 38(1), 90–96 (2017). https://doi.org/10.3174/ajnr.A4968

    Article  Google Scholar 

  15. Demeestere, J., et al.: Effect of sex on clinical outcome and imaging after endovascular treatment of large-vessel ischemic stroke. J. Stroke Cerebrovasc. Dis. 30(2), 105468 (2021). https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105468

    Article  Google Scholar 

  16. Feigin, V.L., et al.: World stroke organization (WSO): global stroke fact sheet 2022. Int. J. Stroke 17(1), 18–29 (2022). https://doi.org/10.1177/17474930211065917

    Article  Google Scholar 

  17. Habegger, S., et al.: Relating acute lesion loads to chronic outcome in ischemic stroke-an exploratory comparison of mismatch patterns and predictive modeling. Front. Neurol. 9, 737 (2018). https://doi.org/10.3389/fneur.2018.00737

    Article  Google Scholar 

  18. Kaffenberger, T., et al.: Stroke population-specific neuroanatomical CT-MRI brain atlas. Neuroradiology 64(8), 1557–1567 (2022). https://doi.org/10.1007/s00234-021-02875-9

    Article  Google Scholar 

  19. Li, X., et al.: Predicting 6-month unfavorable outcome of acute ischemic stroke using machine learning. Front. Neurol. 11, 539509 (2020). https://doi.org/10.3389/fneur.2020.539509

    Article  Google Scholar 

  20. Marstal, K., Berendsen, F., Staring, M., Klein, S.: SimplEelastix: a user-friendly, multi-lingual library for medical image registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 134–142 (2016). https://doi.org/10.1109/CVPRW.2016.78

  21. Mazighi, M., et al.: Impact of onset-to-reperfusion time on stroke mortality: a collaborative pooled analysis. Circulation 127(19), 1980–1985 (2013). https://doi.org/10.1161/CIRCULATIONAHA.112.000311

    Article  Google Scholar 

  22. Nicholls, J.K., Ince, J., Minhas, J.S., Chung, E.M.: Emerging detection techniques for large vessel occlusion stroke: a scoping review. Front. Neurol. 12, 2477 (2022). https://doi.org/10.3389/fneur.2021.780324

    Article  Google Scholar 

  23. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011). https://www.jmlr.org/papers/v12/pedregosa11a.html

  24. Phipps, M.S., Cronin, C.A.: Management of acute ischemic stroke. BMJ 368 (2020). https://doi.org/10.1136/bmj.l6983

  25. Ramos, L.A., et al.: Combination of radiological and clinical baseline data for outcome prediction of patients with an acute ischemic stroke. Front. Neurol., 602 (2022). https://doi.org/10.3389/fneur.2022.809343

  26. Reznik, M.E., et al.: Baseline NIH stroke scale is an inferior predictor of functional outcome in the era of acute stroke intervention. Int. J. Stroke 13(8), 806–810 (2018). https://doi.org/10.1177/1747493018783759

    Article  Google Scholar 

  27. Sacco, S., Toni, D., Bignamini, A.A., Zaninelli, A., Gensini, G.F.: Effect of prior medical treatments on ischemic stroke severity and outcome. Funct. Neurol. 26(3), 133 (2011). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814556/

  28. Tolhuisen, M.L., et al.: Outcome prediction based on automatically extracted infarct core image features in patients with acute ischemic stroke. Diagnostics 12(8), 1786 (2022). https://doi.org/10.3390/diagnostics12081786

    Article  Google Scholar 

  29. Van Os, H.J., et al.: Predicting outcome of endovascular treatment for acute ischemic stroke: potential value of machine learning algorithms. Front. Neurol. 9, 784 (2018). https://doi.org/10.3389/fneur.2018.00784

    Article  Google Scholar 

  30. Virani, S.S., et al.: Heart disease and stroke statistics-2020 update: a report from the American heart association. Circulation 141(9), e139–e596 (2020). https://doi.org/10.1161/CIR.0000000000000757

    Article  Google Scholar 

  31. Wafa, H.A., Wolfe, C.D., Emmett, E., Roth, G.A., Johnson, C.O., Wang, Y.: Burden of stroke in Europe: thirty-year projections of incidence, prevalence, deaths, and disability-adjusted life years. Stroke 51(8), 2418–2427 (2020). https://doi.org/10.1161/STROKEAHA.120.029606

    Article  Google Scholar 

  32. Wang, A., et al.: Effect of recurrent stroke on poor functional outcome in transient ischemic attack or minor stroke. Int. J. Stroke 11(7), NP80 (2016). https://doi.org/10.1177/1747493016641954

  33. Wilson, J.L., Hareendran, A., Hendry, A., Potter, J., Bone, I., Muir, K.W.: Reliability of the modified Rankin Scale across multiple raters: benefits of a structured interview. Stroke 36(4), 777–781 (2005). https://doi.org/10.1161/01.STR.0000157596.13234.95

    Article  Google Scholar 

  34. Zaidat, O.O., et al.: Recommendations on angiographic revascularization grading standards for acute ischemic stroke: a consensus statement. Stroke 44(9), 2650–2663 (2013). https://doi.org/10.1161/STROKEAHA.113.001972

    Article  Google Scholar 

  35. Zeng, M., et al.: Pre-thrombectomy prognostic prediction of large-vessel ischemic stroke using machine learning: a systematic review and meta-analysis. Front. Neurol. 13, 945813 (2022). https://doi.org/10.3389/fneur.2022.945813

    Article  Google Scholar 

  36. Zhao, H., Collier, J.M., Quah, D.M., Purvis, T., Bernhardt, J.: The modified Rankin Scale in acute stroke has good inter-rater-reliability but questionable validity. Cerebrovasc. Dis. 29(2), 188–193 (2010). https://doi.org/10.1159/000267278

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewout Heylen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heylen, E. et al. (2024). Functional Outcome Prediction in Acute Ischemic Stroke. In: Baid, U., et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes SWITCH 2023 2023. Lecture Notes in Computer Science, vol 14668. Springer, Cham. https://doi.org/10.1007/978-3-031-76160-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-76160-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-76159-1

  • Online ISBN: 978-3-031-76160-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics