Abstract
Segmenting brain tumors in multi-parametric magnetic resonance imaging enables performing quantitative analysis in support of clinical trials and personalized patient care. This analysis provides the potential to impact clinical decision-making processes, including diagnosis and prognosis. In 2023, the well-established Brain Tumor Segmentation (BraTS) challenge presented a substantial expansion with eight tasks and 4,500 brain tumor cases. In this paper, we present a deep learning-based ensemble strategy that is evaluated for newly included tumor cases in three tasks: pediatric brain tumors (PED), intracranial meningioma (MEN), and brain metastases (MET). In particular, we ensemble outputs from state-of-the-art nnU-Net and Swin UNETR models on a region-wise basis. Furthermore, we implemented a targeted post-processing strategy based on a cross-validated threshold search to improve the segmentation results for tumor sub-regions. The evaluation of our proposed method on unseen test cases for the three tasks resulted in lesion-wise Dice scores for PED: 0.653, 0.809, 0.826; MEN: 0.876, 0.867, 0.849; and MET: 0.555, 0.6, 0.58; for the enhancing tumor, tumor core, and whole tumor, respectively. Our method was ranked first for PED, third for MEN, and fourth for MET, respectively.
D. Capellán-Martín, Z. Jiang and A. Parida—These authors contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Adewole, M., Rudie, J.D., Gbadamosi, A., et al.: The Brain Tumor Segmentation (BraTS) Challenge 2023: Glioma Segmentation in Sub-Saharan Africa Patient Population (BraTS-Africa) (2023)
Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)
Anwar, S.M., Parida, A., Atito, S., et al.: SS-CXR: multitask representation learning using self supervised pre-training from chest x-rays. arXiv:2211.12944 (2022)
Baid, U., Ghodasara, S., Mohan, S., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)
Bakas, S., Akbari, H., Sotiras, A., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 170117 (2017). https://doi.org/10.1038/sdata.2017.117
Bakas, S., Akbari, H., Sotiras, A., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
Bakas, S., Akbari, H., Sotiras, A., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
Curtin, S., Minino, A., Anderson, R.: Declines in cancer death rates among children and adolescents in the united states, 1999-2014. National Center for Health Statistics Data Brief (2016)
Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Fathi Kazerooni, A., Arif, S., Madhogarhia, R., et al.: Automated tumor segmentation and brain tissue extraction from multiparametric MRI of pediatric brain tumors: a multi-institutional study. Neuro-Oncol. Adv. 5(1), vdad027 (2023)
Hatamizadeh, A., Nath, V., Tang, Y., et al.: Swin UNETR: Swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 272–284. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08999-2_22
Hatamizadeh, A., Tang, Y., Nath, V., et al.: UNETR: transformers for 3D medical image segmentation. In: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 574–584 (2022)
Isensee, F., Jaeger, P.F., Kohl, S.A., et al.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)
Jiang, Z., Parida, A., Anwar, S.M., et al.: Automatic visual acuity loss prediction in children with optic pathway gliomas using magnetic resonance imaging. In: 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1–5 (2023)
Karargyris, A., Umeton, R., Sheller, M., et al.: Federated benchmarking of medical artificial intelligence with MedPerf. Nat. Mach. Intell. 5, 799–810 (2023)
Kazerooni, A.F., Khalili, N., Liu, X., et al.: The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs) (2023)
Kofler, F., Meissen, F., Steinbauer, F., et al.: The Brain Tumor Segmentation (BraTS) Challenge 2023: Local Synthesis of Healthy Brain Tissue via Inpainting (2023)
LaBella, D., Adewole, M., Alonso-Basanta, M., et al.: The ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2023: Intracranial Meningioma (2023)
Li, H.B., Conte, G.M., Anwar, S.M., et al.: The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn) (2023)
Liu, X., Bonner, E., Jiang, Z., et al.: Automatic segmentation of rare pediatric brain tumors using knowledge transfer from adult data. In: 20th IEEE International Symposium on Biomedical Imaging (2023)
Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694
Moawad, A.W., Janas, A., Baid, U., et al.: The Brain Tumor Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI (2023)
Parida, A., Capellan-Martin, D., Atito, S., et al.: DiCoM–diverse concept modeling towards enhancing generalizability in chest X-ray studies. arXiv:2402.15534 (2024)
Rashed, W.M., Maher, E., Adel, M., et al.: Pediatric diffuse intrinsic pontine glioma: where do we stand? Cancer Metastasis Rev. 38(4), 759–770 (2019)
Rohlfing, T., Zahr, N.M., Sullivan, E.V., Pfefferbaum, A.: The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 31(5), 798–819 (2010)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Tang, Y., Yang, D., Li, W., Roth, H.R., et al.: Self-supervised pre-training of swin transformers for 3D medical image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20730–20740 (2022)
Acknowledgements
Partial support for this work was provided by the National Cancer Institute (UG3 CA236536) and by the Spanish Ministerio de Ciencia e Innovación, the Agencia Estatal de Investigación and NextGenerationEU funds, under grants PDC2022-133865-I00 and PID2022-141493OB-I00. The authors gratefully acknowledge the Universidad Politécnica de Madrid (www.upm.es) for providing computing resources on Magerit Supercomputer.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Capellán-Martín, D. et al. (2024). Model Ensemble for Brain Tumor Segmentation in Magnetic Resonance Imaging. In: Baid, U., et al. Brain Tumor Segmentation, and Cross-Modality Domain Adaptation for Medical Image Segmentation. crossMoDA BraTS 2023 2023. Lecture Notes in Computer Science, vol 14669. Springer, Cham. https://doi.org/10.1007/978-3-031-76163-8_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-76163-8_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-76162-1
Online ISBN: 978-3-031-76163-8
eBook Packages: Computer ScienceComputer Science (R0)