Skip to main content

Model Ensemble for Brain Tumor Segmentation in Magnetic Resonance Imaging

  • Conference paper
  • First Online:
Brain Tumor Segmentation, and Cross-Modality Domain Adaptation for Medical Image Segmentation (crossMoDA 2023, BraTS 2023)

Abstract

Segmenting brain tumors in multi-parametric magnetic resonance imaging enables performing quantitative analysis in support of clinical trials and personalized patient care. This analysis provides the potential to impact clinical decision-making processes, including diagnosis and prognosis. In 2023, the well-established Brain Tumor Segmentation (BraTS) challenge presented a substantial expansion with eight tasks and 4,500 brain tumor cases. In this paper, we present a deep learning-based ensemble strategy that is evaluated for newly included tumor cases in three tasks: pediatric brain tumors (PED), intracranial meningioma (MEN), and brain metastases (MET). In particular, we ensemble outputs from state-of-the-art nnU-Net and Swin UNETR models on a region-wise basis. Furthermore, we implemented a targeted post-processing strategy based on a cross-validated threshold search to improve the segmentation results for tumor sub-regions. The evaluation of our proposed method on unseen test cases for the three tasks resulted in lesion-wise Dice scores for PED: 0.653, 0.809, 0.826; MEN: 0.876, 0.867, 0.849; and MET: 0.555, 0.6, 0.58; for the enhancing tumor, tumor core, and whole tumor, respectively. Our method was ranked first for PED, third for MEN, and fourth for MET, respectively.

D. Capellán-Martín, Z. Jiang and A. Parida—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://monai.io.

  2. 2.

    optuna.readthedocs.io/.

References

  1. Adewole, M., Rudie, J.D., Gbadamosi, A., et al.: The Brain Tumor Segmentation (BraTS) Challenge 2023: Glioma Segmentation in Sub-Saharan Africa Patient Population (BraTS-Africa) (2023)

    Google Scholar 

  2. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)

    Google Scholar 

  3. Anwar, S.M., Parida, A., Atito, S., et al.: SS-CXR: multitask representation learning using self supervised pre-training from chest x-rays. arXiv:2211.12944 (2022)

  4. Baid, U., Ghodasara, S., Mohan, S., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  5. Bakas, S., Akbari, H., Sotiras, A., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 170117 (2017). https://doi.org/10.1038/sdata.2017.117

  6. Bakas, S., Akbari, H., Sotiras, A., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  7. Bakas, S., Akbari, H., Sotiras, A., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  8. Curtin, S., Minino, A., Anderson, R.: Declines in cancer death rates among children and adolescents in the united states, 1999-2014. National Center for Health Statistics Data Brief (2016)

    Google Scholar 

  9. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  10. Fathi Kazerooni, A., Arif, S., Madhogarhia, R., et al.: Automated tumor segmentation and brain tissue extraction from multiparametric MRI of pediatric brain tumors: a multi-institutional study. Neuro-Oncol. Adv. 5(1), vdad027 (2023)

    Google Scholar 

  11. Hatamizadeh, A., Nath, V., Tang, Y., et al.: Swin UNETR: Swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 272–284. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08999-2_22

    Chapter  Google Scholar 

  12. Hatamizadeh, A., Tang, Y., Nath, V., et al.: UNETR: transformers for 3D medical image segmentation. In: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 574–584 (2022)

    Google Scholar 

  13. Isensee, F., Jaeger, P.F., Kohl, S.A., et al.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  14. Jiang, Z., Parida, A., Anwar, S.M., et al.: Automatic visual acuity loss prediction in children with optic pathway gliomas using magnetic resonance imaging. In: 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1–5 (2023)

    Google Scholar 

  15. Karargyris, A., Umeton, R., Sheller, M., et al.: Federated benchmarking of medical artificial intelligence with MedPerf. Nat. Mach. Intell. 5, 799–810 (2023)

    Article  Google Scholar 

  16. Kazerooni, A.F., Khalili, N., Liu, X., et al.: The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs) (2023)

    Google Scholar 

  17. Kofler, F., Meissen, F., Steinbauer, F., et al.: The Brain Tumor Segmentation (BraTS) Challenge 2023: Local Synthesis of Healthy Brain Tissue via Inpainting (2023)

    Google Scholar 

  18. LaBella, D., Adewole, M., Alonso-Basanta, M., et al.: The ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2023: Intracranial Meningioma (2023)

    Google Scholar 

  19. Li, H.B., Conte, G.M., Anwar, S.M., et al.: The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn) (2023)

    Google Scholar 

  20. Liu, X., Bonner, E., Jiang, Z., et al.: Automatic segmentation of rare pediatric brain tumors using knowledge transfer from adult data. In: 20th IEEE International Symposium on Biomedical Imaging (2023)

    Google Scholar 

  21. Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  22. Moawad, A.W., Janas, A., Baid, U., et al.: The Brain Tumor Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI (2023)

    Google Scholar 

  23. Parida, A., Capellan-Martin, D., Atito, S., et al.: DiCoM–diverse concept modeling towards enhancing generalizability in chest X-ray studies. arXiv:2402.15534 (2024)

  24. Rashed, W.M., Maher, E., Adel, M., et al.: Pediatric diffuse intrinsic pontine glioma: where do we stand? Cancer Metastasis Rev. 38(4), 759–770 (2019)

    Article  Google Scholar 

  25. Rohlfing, T., Zahr, N.M., Sullivan, E.V., Pfefferbaum, A.: The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 31(5), 798–819 (2010)

    Article  Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  27. Tang, Y., Yang, D., Li, W., Roth, H.R., et al.: Self-supervised pre-training of swin transformers for 3D medical image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20730–20740 (2022)

    Google Scholar 

Download references

Acknowledgements

Partial support for this work was provided by the National Cancer Institute (UG3 CA236536) and by the Spanish Ministerio de Ciencia e Innovación, the Agencia Estatal de Investigación and NextGenerationEU funds, under grants PDC2022-133865-I00 and PID2022-141493OB-I00. The authors gratefully acknowledge the Universidad Politécnica de Madrid (www.upm.es) for providing computing resources on Magerit Supercomputer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius George Linguraru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Capellán-Martín, D. et al. (2024). Model Ensemble for Brain Tumor Segmentation in Magnetic Resonance Imaging. In: Baid, U., et al. Brain Tumor Segmentation, and Cross-Modality Domain Adaptation for Medical Image Segmentation. crossMoDA BraTS 2023 2023. Lecture Notes in Computer Science, vol 14669. Springer, Cham. https://doi.org/10.1007/978-3-031-76163-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-76163-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-76162-1

  • Online ISBN: 978-3-031-76163-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics