Abstract
Glioma is one of the most dangerous and aggressive brain tumor types. These tumors are difficult to diagnose, and they require careful and precise identification and delineation of different tumor subtypes. Currently, magnetic resonance imaging (MRI) is the gold standard for glioma detection. However, not all the territories are equipped with up-to-date medical devices and highly skilled professionals, and it is important to develop glioma segmentation methods for the images acquired in such low-resource settings. Therefore, BraTS-Africa challenge was announced in 2023 to provide researchers the opportunity to develop segmentation algorithms using brain MRI glioma cases from Sub-Saharan Africa population. In this paper, we present our submission to this challenge. We based our approach on the well-known nnUNet model, which won original BraTS 2020 and 2021 challenges. Within our work, we studied the impact of using pretrained and fine-tuned models, different image input modalities, ensemble of different models, and the application of specific region based strategies. Obtained results on the unseen testing data showed promising results, having good Dice values for all 3 classes and a small HD95 distance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adewole, M., et al.: The brain tumor segmentation (brats) challenge 2023: Glioma segmentation in sub-saharan Africa patient population (brats-africa) (2023). https://doi.org/10.48550/ARXIV.2305.19369. https://arxiv.org/abs/2305.19369
Anazodo, U.C., Adewole, M., Dako, F.: AI for population and global health in radiology. Radiology: Artif. Intell. 4(4) (2022). https://doi.org/10.1148/ryai.220107
Baid, U., et al.: The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification (2021). https://doi.org/10.48550/ARXIV.2107.02314. https://arxiv.org/abs/2107.02314
Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1) (2017). https://doi.org/10.1038/sdata.2017.117
Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2020). https://doi.org/10.1038/s41592-020-01008-z
Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_11
Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_22
Luo, J., Pan, M., Mo, K., Mao, Y., Zou, D.: Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma. Semin. Cancer Biol. 91, 110–123 (2023). https://doi.org/10.1016/j.semcancer.2023.03.006
Luu, H.M., Park, S.H.: Extending nn-UNet for brain tumor segmentation. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 173–186. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-09002-8_16
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/tmi.2014.2377694
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation (2015). https://doi.org/10.48550/ARXIV.1505.04597. https://arxiv.org/abs/1505.04597
Sheller, M.J., et al.: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 10(1) (2020). https://doi.org/10.1038/s41598-020-69250-1
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3d u-net: learning dense volumetric segmentation from sparse annotation (2016). https://doi.org/10.48550/ARXIV.1606.06650. https://arxiv.org/abs/1606.06650
Weller, M., et al.: EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat. Rev. Clin. Oncol. 18(3), 170–186 (2020). https://doi.org/10.1038/s41571-020-00447-z
Acknowledgements
Valeriia Abramova holds FPI grant from the Ministerio de Ciencia, Innovación y Universidades with reference number PRE2021-099121. Uma Maria Lal-Trehan Estrada holds an IFUdG2022 grant from Universitat de Girona. Cansu Yalçın holds an FI grant from the Catalan Government with reference number 2023 FI-1 00096. This work has been supported by DPI2020-114769RB-I00 from the Ministerio de Ciencia, Innovación y Universidades and also by the ICREA Academia program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Abramova, V. et al. (2024). nnUNet for Brain Tumor Segmentation in Sub-Saharan Africa Patient Population. In: Baid, U., et al. Brain Tumor Segmentation, and Cross-Modality Domain Adaptation for Medical Image Segmentation. crossMoDA BraTS 2023 2023. Lecture Notes in Computer Science, vol 14669. Springer, Cham. https://doi.org/10.1007/978-3-031-76163-8_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-76163-8_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-76162-1
Online ISBN: 978-3-031-76163-8
eBook Packages: Computer ScienceComputer Science (R0)