Skip to main content

nnUNet for Brain Tumor Segmentation in Sub-Saharan Africa Patient Population

  • Conference paper
  • First Online:
Brain Tumor Segmentation, and Cross-Modality Domain Adaptation for Medical Image Segmentation (crossMoDA 2023, BraTS 2023)

Abstract

Glioma is one of the most dangerous and aggressive brain tumor types. These tumors are difficult to diagnose, and they require careful and precise identification and delineation of different tumor subtypes. Currently, magnetic resonance imaging (MRI) is the gold standard for glioma detection. However, not all the territories are equipped with up-to-date medical devices and highly skilled professionals, and it is important to develop glioma segmentation methods for the images acquired in such low-resource settings. Therefore, BraTS-Africa challenge was announced in 2023 to provide researchers the opportunity to develop segmentation algorithms using brain MRI glioma cases from Sub-Saharan Africa population. In this paper, we present our submission to this challenge. We based our approach on the well-known nnUNet model, which won original BraTS 2020 and 2021 challenges. Within our work, we studied the impact of using pretrained and fine-tuned models, different image input modalities, ensemble of different models, and the application of specific region based strategies. Obtained results on the unseen testing data showed promising results, having good Dice values for all 3 classes and a small HD95 distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adewole, M., et al.: The brain tumor segmentation (brats) challenge 2023: Glioma segmentation in sub-saharan Africa patient population (brats-africa) (2023). https://doi.org/10.48550/ARXIV.2305.19369. https://arxiv.org/abs/2305.19369

  2. Anazodo, U.C., Adewole, M., Dako, F.: AI for population and global health in radiology. Radiology: Artif. Intell. 4(4) (2022). https://doi.org/10.1148/ryai.220107

  3. Baid, U., et al.: The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification (2021). https://doi.org/10.48550/ARXIV.2107.02314. https://arxiv.org/abs/2107.02314

  4. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1) (2017). https://doi.org/10.1038/sdata.2017.117

  5. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2020). https://doi.org/10.1038/s41592-020-01008-z

    Article  Google Scholar 

  6. Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_11

    Chapter  Google Scholar 

  7. Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_22

    Chapter  Google Scholar 

  8. Luo, J., Pan, M., Mo, K., Mao, Y., Zou, D.: Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma. Semin. Cancer Biol. 91, 110–123 (2023). https://doi.org/10.1016/j.semcancer.2023.03.006

    Article  Google Scholar 

  9. Luu, H.M., Park, S.H.: Extending nn-UNet for brain tumor segmentation. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 173–186. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-09002-8_16

  10. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/tmi.2014.2377694

    Article  Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation (2015). https://doi.org/10.48550/ARXIV.1505.04597. https://arxiv.org/abs/1505.04597

  12. Sheller, M.J., et al.: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 10(1) (2020). https://doi.org/10.1038/s41598-020-69250-1

  13. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3d u-net: learning dense volumetric segmentation from sparse annotation (2016). https://doi.org/10.48550/ARXIV.1606.06650. https://arxiv.org/abs/1606.06650

  14. Weller, M., et al.: EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat. Rev. Clin. Oncol. 18(3), 170–186 (2020). https://doi.org/10.1038/s41571-020-00447-z

    Article  Google Scholar 

Download references

Acknowledgements

Valeriia Abramova holds FPI grant from the Ministerio de Ciencia, Innovación y Universidades with reference number PRE2021-099121. Uma Maria Lal-Trehan Estrada holds an IFUdG2022 grant from Universitat de Girona. Cansu Yalçın holds an FI grant from the Catalan Government with reference number 2023 FI-1 00096. This work has been supported by DPI2020-114769RB-I00 from the Ministerio de Ciencia, Innovación y Universidades and also by the ICREA Academia program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriia Abramova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abramova, V. et al. (2024). nnUNet for Brain Tumor Segmentation in Sub-Saharan Africa Patient Population. In: Baid, U., et al. Brain Tumor Segmentation, and Cross-Modality Domain Adaptation for Medical Image Segmentation. crossMoDA BraTS 2023 2023. Lecture Notes in Computer Science, vol 14669. Springer, Cham. https://doi.org/10.1007/978-3-031-76163-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-76163-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-76162-1

  • Online ISBN: 978-3-031-76163-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics