Abstract
Recently, it was shown that a radial basis function network (RBFN) with a softmax output layer amounts to pooling by Dempster’s rule positive and negative evidence for each class, and approximating the resulting belief function by a probability distribution using the plausibility transform. This so-called latent belief function offers a richer uncertainty quantification than the probabilistic output of the RBFN. In this paper, we show that there exists actually a set of latent belief functions for a RBFN. This set is obtained by considering all possible dependence structures, which are described by correlations, between the positive and negative evidence for each class. Furthermore, we show that performance can be enhanced by optimizing the correlations brought to light.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
We focus for short on the case \(K>2\) in this section, but our developments also hold for \(K=2\).
- 3.
Enforcing at least two training examples of the given class per cluster.
- 4.
Pima is available from the R package MASS [26]. Ionosphere, Glass and Vowel are available from the UCI ML repository https://archive.ics.uci.edu. For Vowel, we considered only the first six classes, as in [11].
- 5.
P-value obtained for the Glass dataset.
References
Bradley, P.S., Bennett, K.P., Demiriz, A.: Constrained k-means clustering. Technical report. MSR-TR-2000-65, Microsoft Research, Redmond (2000). www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2000-65.pdf
Cobb, B.R., Shenoy, P.P.: On the plausibility transformation method for translating belief function models to probability models. Int. J. Approx. Reason. 41(3), 314–330 (2006)
Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)
Denœux, T.: A \(k\)-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybern. 25(5), 804–213 (1995)
Denœux, T.: A neural network classifier based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybern. - Part A 30(2), 131–150 (2000)
Denœux, T.: Quantifying predictive uncertainty using belief functions: different approaches and practical construction. In: Kreinovich, V., Sriboonchitta, S., Chakpitak, N. (eds.) TES 2018. SCI, vol. 753, pp. 157–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70942-0_8
Denœux, T.: Logistic regression, neural networks and Dempster-Shafer theory: a new perspective. Knowl.-Based Syst. 176, 54–67 (2019)
Denœux, T.: Belief functions induced by random fuzzy sets: a general framework for representing uncertain and fuzzy evidence. Fuzzy Sets Syst. 424, 63–91 (2021)
Denœux, T.: Théorie des fonctions de croyance et apprentissage automatique, (2022). journée Apprentissage automatique multimodal et fusion d’informations (2ème édition), GdR ISIS, virtual, 19th January 2022
Denœux, T.: Quantifying prediction uncertainty in regression using random fuzzy sets: the ENNreg model. IEEE Trans. Fuzzy Syst. 31(10), 3690–3699 (2023)
Denœux, T.: Uncertainty quantification in logistic regression using random fuzzy sets and belief functions. Int. J. Approx. Reason. 168, 109159 (2024)
Denœux, T.: Combination of dependent and partially reliable Gaussian random fuzzy numbers. Inf. Sci. 681, 121208 (2024)
Dubois, D., Faux, F., Prade, H.: Prejudice in uncertain information merging: pushing the fusion paradigm of evidence theory further. Int. J. Approx. Reason. 121, 1–22 (2020)
Ferson, S., et al.: Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis. Technical report. SAND2004-3072, Sandia Nat. Lab., Albuquerque, New Mexico (2004)
Fréchet, M.: Généralisations du théorème des probabilités totales. Fundam. Math. 25, 379–387 (1935)
Huang, L., Ruan, S., Decazes, P., Denœux, T.: Lymphoma segmentation from 3D PET-CT images using a deep evidential network. Int. J. Approx. Reason. 149, 39–60 (2022)
Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach. Learn. 110, 457–506 (2021)
Klir, G.J.: Uncertainty and Information: Foundations of Generalized Information Theory. Wiley-IEEE Press, Hoboken (2005)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Schwenker, F., Kestler, H.A., Palm, G.: Three learning phases for radial-basis-function networks. Neural Netw. 14(4), 439–458 (2001)
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton, N.J. (1976)
Shafer, G.: Probability judgment in artificial intelligence. In: Kanal, L.N., Lemmer, J.F. (eds.) Uncertainty in Artificial Intelligence, Machine Intelligence and Pattern Recognition, vol. 4, pp. 127–135. North-Holland (1986)
Shenoy, P.: On distinct belief functions in the Dempster-Shafer theory. In: Miranda, E., Montes, I., Quaeghebeur, E., Vantaggi, B. (eds.) Proceedings of the Thirteenth International Symposium on Imprecise Probability: Theories and Applications, vol. 215, pp. 426–437. PMLR (2023)
Smets, P.: Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem. Int. J. Approx. Reason. 9(1), 1–35 (1993)
Tong, Z., Xu, P., Denœux, T.: An evidential classifier based on Dempster-Shafer theory and deep learning. Neurocomputing 450, 275–293 (2021)
Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S, fourth edn. Springer, New York (2002). https://doi.org/10.1007/978-0-387-21706-2
Voorbraak, F.: A computationally efficient approximation of Dempster-Shafer theory. Int. J. Man-Mach. Stud. 30(5), 525–536 (1989)
Acknowledgments
Serigne Diène’s PhD work is funded by the Hauts-de-France region and Artois University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pichon, F., Diène, S., Denœux, T., Ramel, S., Mercier, D. (2025). \(\textbf{r}\)-ERBFN: An Extension of the Evidential RBFN Accounting for the Dependence Between Positive and Negative Evidence. In: Destercke, S., Martinez, M.V., Sanfilippo, G. (eds) Scalable Uncertainty Management. SUM 2024. Lecture Notes in Computer Science(), vol 15350. Springer, Cham. https://doi.org/10.1007/978-3-031-76235-2_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-76235-2_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-76234-5
Online ISBN: 978-3-031-76235-2
eBook Packages: Computer ScienceComputer Science (R0)