Abstract
Referring to Dempster-Shafer theory, we introduce a bivariate random walk enforcing Markovianity and time-homogeneity under a pessimistic view towards ambiguity. This is done through a suitable family of joint t-step transition belief functions, generalizing the product of two independent binomial transition probabilities, where ambiguity is expressed by a parameter. Given a real-valued function of the pair at a fixed time horizon, we define the dynamic lower and upper Value-at-Risk (VaR), generated by the corresponding dynamic p-box.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bastianello, L., Chateauneuf, A., Cornet, B.: Put-call parities, absence of arbitrage opportunities, and nonlinear pricing rules. Math. Financ. (2024). https://doi.org/10.1111/mafi.12433
Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M.: Put-Call parity and market frictions. J. Econ. Theory 157, 730–762 (2015)
Cheridito, P., Stadje, M.: Time-inconsistency of VaR and time-consistent alternatives. Financ. Res. Lett. 6(1), 40–46 (2009)
Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1954)
Cinfrignini, A., Petturiti, D., Vantaggi, B.: Markov and time-homogeneity properties in Dempster-Shafer random walks. In: Ciucci, D., et al. (eds.) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Communications in Computer and Information Science, vol. 1601, pp. 784–797. Springer, Cham (2022)
Cinfrignini, A., Petturiti, D., Vantaggi, B.: Dynamic bid-ask pricing under Dempster-Shafer uncertainty. J. Math. Econ. 107, 102871 (2023)
Çinlar, E.: Introduction to Stochastic Processes. Prentice-Hall (1975)
Coletti, G., Petturiti, D., Vantaggi, B.: Conditional belief functions as lower envelopes of conditional probabilities in a finite setting. Inf. Sci. 339, 64–84 (2016)
Delbaen, F.: Coherent risk measures on general probability spaces. In: Sandmann, K., Schönbucher, P.J. (eds.) Advances in Finance and Stochastics, pp. 1–37. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04790-3_1
Dempster, A.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38(2), 325–339 (1967)
Dubois, D., Prade, H.: Updating with belief functions, ordinal conditional functions and possibility measures. In: Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, UAI 1990. MIT, Cambridge, MA, USA, 27–29 July 1990, pp. 311–330. Elsevier (1991)
Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D., Sentz, K.: Constructing probability boxes and Dempster-Shafer structures. Technical report. SAND2002-4015, Sandia National Laboratories (2003)
Grabisch, M.: Set Functions, Games and Capacities in Decision Making. Springer, Cham (2016)
Krak, T., T’Joens, N., de Bock, J.: Hitting times and probabilities for imprecise Markov chains. Proc. Mach. Learn. Res. 103, 265–275 (2019)
Kriegler, E., Held, H.: Utilizing belief functions for the estimation of future climate change. Int. J. Approximate Reasoning 39(2), 185–209 (2005)
Montes, I., Destercke, S.: On extreme points of p-boxes and belief functions. Ann. Math. Artif. Intell. 81, 405–428 (2017)
Nendel, M.: On nonlinear expectations and Markov chains under model uncertainty. Int. J. Approximate Reasoning 130, 226–245 (2021)
Petturiti, D., Stabile, G., Vantaggi, B.: Addressing ambiguity in randomized reinsurance stop-loss treaties using belief functions. Int. J. Approximate Reasoning 161, 108986 (2023)
Petturiti, D., Vantaggi, B.: Conditional decisions under objective and subjective ambiguity in Dempster-Shafer theory. Fuzzy Sets Syst. 447, 155–181 (2022)
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)
Škulj, D.: Random walks on graphs with interval weights and precise marginals. Int. J. Approximate Reasoning 73, 76–86 (2016)
Suppes, P., Zanotti, M.: On using random relations to generate upper and lower probabilities. Synthese 36(4), 427–440 (1977)
T’Joens, N., De Bock, J., de Cooman, G.: A particular upper expectation as global belief model for discrete-time finite-state uncertain processes. Int. J. Approximate Reasoning 131, 30–55 (2021)
Troffaes, M., Destercke, S.: Probability boxes on totally preordered spaces for multivariate modelling. Int. J. Approximate Reasoning 52(6), 767–791 (2011)
Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)
Williams, P.: Notes on conditional previsions. Int. J. Approximate Reasoning 44(3), 366–383 (2007)
Acknowledgement
We acknowledge the support of the PRIN 2022 project “Models for dynamic reasoning under partial knowledge to make interpretable decisions” (Project number: 2022AP3B3B, CUP Master: J53D23004340006, CUP: B53D23009860006) funded by the European Union - Next Generation EU (Missione 4 Componente 2). The first and third authors have been supported by the Sapienza University of Rome research project “Ambiguity: its role in asset pricing and insurance” (Grant number: RM123188F744909D).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cinfrignini, A., Petturiti, D., Vantaggi, B. (2025). Imprecise Dynamic Value-at-Risk Induced by a DS-Bivariate Random Walk. In: Destercke, S., Martinez, M.V., Sanfilippo, G. (eds) Scalable Uncertainty Management. SUM 2024. Lecture Notes in Computer Science(), vol 15350. Springer, Cham. https://doi.org/10.1007/978-3-031-76235-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-76235-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-76234-5
Online ISBN: 978-3-031-76235-2
eBook Packages: Computer ScienceComputer Science (R0)