Skip to main content

Imprecise Dynamic Value-at-Risk Induced by a DS-Bivariate Random Walk

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2024)

Abstract

Referring to Dempster-Shafer theory, we introduce a bivariate random walk enforcing Markovianity and time-homogeneity under a pessimistic view towards ambiguity. This is done through a suitable family of joint t-step transition belief functions, generalizing the product of two independent binomial transition probabilities, where ambiguity is expressed by a parameter. Given a real-valued function of the pair at a fixed time horizon, we define the dynamic lower and upper Value-at-Risk (VaR), generated by the corresponding dynamic p-box.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bastianello, L., Chateauneuf, A., Cornet, B.: Put-call parities, absence of arbitrage opportunities, and nonlinear pricing rules. Math. Financ. (2024). https://doi.org/10.1111/mafi.12433

    Article  MathSciNet  Google Scholar 

  2. Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M.: Put-Call parity and market frictions. J. Econ. Theory 157, 730–762 (2015)

    Article  MathSciNet  Google Scholar 

  3. Cheridito, P., Stadje, M.: Time-inconsistency of VaR and time-consistent alternatives. Financ. Res. Lett. 6(1), 40–46 (2009)

    Article  Google Scholar 

  4. Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1954)

    Article  MathSciNet  Google Scholar 

  5. Cinfrignini, A., Petturiti, D., Vantaggi, B.: Markov and time-homogeneity properties in Dempster-Shafer random walks. In: Ciucci, D., et al. (eds.) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Communications in Computer and Information Science, vol. 1601, pp. 784–797. Springer, Cham (2022)

    Google Scholar 

  6. Cinfrignini, A., Petturiti, D., Vantaggi, B.: Dynamic bid-ask pricing under Dempster-Shafer uncertainty. J. Math. Econ. 107, 102871 (2023)

    Article  MathSciNet  Google Scholar 

  7. Çinlar, E.: Introduction to Stochastic Processes. Prentice-Hall (1975)

    Google Scholar 

  8. Coletti, G., Petturiti, D., Vantaggi, B.: Conditional belief functions as lower envelopes of conditional probabilities in a finite setting. Inf. Sci. 339, 64–84 (2016)

    Article  MathSciNet  Google Scholar 

  9. Delbaen, F.: Coherent risk measures on general probability spaces. In: Sandmann, K., Schönbucher, P.J. (eds.) Advances in Finance and Stochastics, pp. 1–37. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04790-3_1

    Chapter  Google Scholar 

  10. Dempster, A.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38(2), 325–339 (1967)

    Article  MathSciNet  Google Scholar 

  11. Dubois, D., Prade, H.: Updating with belief functions, ordinal conditional functions and possibility measures. In: Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, UAI 1990. MIT, Cambridge, MA, USA, 27–29 July 1990, pp. 311–330. Elsevier (1991)

    Google Scholar 

  12. Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D., Sentz, K.: Constructing probability boxes and Dempster-Shafer structures. Technical report. SAND2002-4015, Sandia National Laboratories (2003)

    Google Scholar 

  13. Grabisch, M.: Set Functions, Games and Capacities in Decision Making. Springer, Cham (2016)

    Book  Google Scholar 

  14. Krak, T., T’Joens, N., de Bock, J.: Hitting times and probabilities for imprecise Markov chains. Proc. Mach. Learn. Res. 103, 265–275 (2019)

    MathSciNet  Google Scholar 

  15. Kriegler, E., Held, H.: Utilizing belief functions for the estimation of future climate change. Int. J. Approximate Reasoning 39(2), 185–209 (2005)

    Article  MathSciNet  Google Scholar 

  16. Montes, I., Destercke, S.: On extreme points of p-boxes and belief functions. Ann. Math. Artif. Intell. 81, 405–428 (2017)

    Article  MathSciNet  Google Scholar 

  17. Nendel, M.: On nonlinear expectations and Markov chains under model uncertainty. Int. J. Approximate Reasoning 130, 226–245 (2021)

    Article  MathSciNet  Google Scholar 

  18. Petturiti, D., Stabile, G., Vantaggi, B.: Addressing ambiguity in randomized reinsurance stop-loss treaties using belief functions. Int. J. Approximate Reasoning 161, 108986 (2023)

    Article  MathSciNet  Google Scholar 

  19. Petturiti, D., Vantaggi, B.: Conditional decisions under objective and subjective ambiguity in Dempster-Shafer theory. Fuzzy Sets Syst. 447, 155–181 (2022)

    Article  MathSciNet  Google Scholar 

  20. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Book  Google Scholar 

  21. Škulj, D.: Random walks on graphs with interval weights and precise marginals. Int. J. Approximate Reasoning 73, 76–86 (2016)

    Article  MathSciNet  Google Scholar 

  22. Suppes, P., Zanotti, M.: On using random relations to generate upper and lower probabilities. Synthese 36(4), 427–440 (1977)

    Article  MathSciNet  Google Scholar 

  23. T’Joens, N., De Bock, J., de Cooman, G.: A particular upper expectation as global belief model for discrete-time finite-state uncertain processes. Int. J. Approximate Reasoning 131, 30–55 (2021)

    Article  MathSciNet  Google Scholar 

  24. Troffaes, M., Destercke, S.: Probability boxes on totally preordered spaces for multivariate modelling. Int. J. Approximate Reasoning 52(6), 767–791 (2011)

    Article  Google Scholar 

  25. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)

    Book  Google Scholar 

  26. Williams, P.: Notes on conditional previsions. Int. J. Approximate Reasoning 44(3), 366–383 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

We acknowledge the support of the PRIN 2022 project “Models for dynamic reasoning under partial knowledge to make interpretable decisions” (Project number: 2022AP3B3B, CUP Master: J53D23004340006, CUP: B53D23009860006) funded by the European Union - Next Generation EU (Missione 4 Componente 2). The first and third authors have been supported by the Sapienza University of Rome research project “Ambiguity: its role in asset pricing and insurance” (Grant number: RM123188F744909D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Petturiti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cinfrignini, A., Petturiti, D., Vantaggi, B. (2025). Imprecise Dynamic Value-at-Risk Induced by a DS-Bivariate Random Walk. In: Destercke, S., Martinez, M.V., Sanfilippo, G. (eds) Scalable Uncertainty Management. SUM 2024. Lecture Notes in Computer Science(), vol 15350. Springer, Cham. https://doi.org/10.1007/978-3-031-76235-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-76235-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-76234-5

  • Online ISBN: 978-3-031-76235-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics