Skip to main content

Variable Stiffness Mechanism Using a Cam Profile

  • Conference paper
  • First Online:
European Robotics Forum 2024 (ERF 2024)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 32))

Included in the following conference series:

  • 80 Accesses

Abstract

We present a variable stiffness mechanism based on a cam profile which nonlinearly deflects a linear spring. An iterative, feedback-based method for generating the cam profile following a desired force-deflection curve is proposed. Experimental results demonstrate strong correlation between desired and measured force-deflection curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that this is an approximation that holds only for limited nonlinearity, as with increasing nonlinearity the detachment point will move off the x-axis.

References

  1. Ham, R., Sugar, T., Vanderborght, B., Hollander, K., Lefeber, D.: Compliant actuator designs. IEEE Robot. Autom. Mag. 3(16), 81–94 (2009)

    Google Scholar 

  2. Migliore, S.A., Brown, E.A., DeWeerth, S.P.: Biologically inspired joint stiffness control. Inl Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 4508–4513, IEEE (2005)

    Google Scholar 

  3. Schmit, N., Okada, M.: Synthesis of a non-circular cable spool to realize a nonlinear rotational spring. In:2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 762–767. IEEE (2011)

    Google Scholar 

  4. Yigit, C.B., Bayraktar, E., Boyraz, P.: Low-cost variable stiffness joint design using translational variable radius pulleys. Mech. Mach. Theory 130, 203–219 (2018)

    Article  Google Scholar 

  5. Malzahn, J.,  Barrett, E.,  Tsagarakis, N.: A rolling flexure mechanism for progressive stiffness actuators. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 8415–8421 (2019)

    Google Scholar 

  6. Kim, D.-H., Oh, J.-H.: Hysteresis modeling for torque control of an elastomer series elastic actuator. IEEE/ASME Trans. Mechatron. 24(3), 1316–1324 (2019)

    Article  MATH  Google Scholar 

  7. Jarrett, C., McDaid, A.: Modeling and feasibility of an elastomer-based series elastic actuator as a haptic interaction sensor for exoskeleton robotics. IEEE/ASME Trans. Mechatron. 24(3), 1325–1333 (2019)

    Article  MATH  Google Scholar 

  8. Okken, B., Stramigioli, S., Roozing, W.: Progressive series-elastic actuation with magnet-based non-linear elastic elements. In: 2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 166–173 (2022)

    Google Scholar 

  9. Bluiminck, M. Roozing, W.: An underactuated tendon-driven gripper with variable stiffness for deformable agri-food objects,. In: 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), pp. 1–8. IEEE (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley Roozing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van Ruitenbeek, F., Okken, B., Roozing, W. (2024). Variable Stiffness Mechanism Using a Cam Profile. In: Secchi, C., Marconi, L. (eds) European Robotics Forum 2024. ERF 2024. Springer Proceedings in Advanced Robotics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-031-76424-0_14

Download citation

Publish with us

Policies and ethics