Abstract
Autonomous drone technology increasingly enables their use in diverse applications, offering cost and time benefits in precision agriculture and surveillance. They are especially efficient in search and rescue and exploring hard-to-access areas.
Navigating indoor settings and partially known environments poses significant challenges in autonomous robotics. This paper introduces a novel method that leverages depth image data to substantially improve performance in these contexts. We elucidate the method’s design, showcasing its dependability and advantages over conventional approaches. Furthermore, the paper delineates the critical procedures for effective autonomous robot guidance, tackling complex obstacles inherent to the field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Abderahman, R., Alireza, A., Karim, R., Horst, T.: Drones in agriculture: a review and bibliometric analysis. Comput. Electron. Agric. 198 (2022). https://doi.org/10.1016/j.compag.2022.107017
Kulbacki, Marek, Segen, J., et al.: Survey of drones for agriculture automation from planting to harvest. In: 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES) (2018). https://doi.org/10.1109/INES.2018.8523943
Yunus, K., et al.: The potential use of unmanned aircraft systems (drones) in mountain search and rescue operations. Am. J. Emerg. Med. 36, 583–588 (2018). https://doi.org/10.1016/j.ajem.2017.09.025
OpenCV, Detection of ArUco Markers. https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
Ferrão, J., Dias, P., Neves, A.J.R.: Detection of Aruco markers using the quadrilateral sum conjuncture. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 363–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_41
Berral-Soler, R., Muñoz-Salinas, R., Medina-Carnicer, R., Marín-Jiménez, M.: DeepArUco: marker detection and classification in challenging lighting conditions. In: Iberian Conference on Pattern Recognition and Image Analysis, pp. 199–210 (2023). https://doi.org/10.1007/978-3-031-36616-1_16m
Li, B., Wang, B, Tan, X., Wu, J., Wei, L.: Corner location and recognition of single ArUco marker under occlusion based on YOLO algorithm. J. Electron. Imaging, 30 (2021). https://doi.org/10.1117/1.JEI.30.3.033012
Nahangi, M., Heins, A., Mccabe, B., Schoellig, A.: Automated localization of UAVs in GPS-denied indoor construction environments using fiducial markers. In: 35th International Symposium on Automation and Robotics in Construction (ISARC 2018). https://doi.org/10.22260/ISARC2018/0012
Mráz, E., Rodina, J., A. Babinec: Using fiducial markers to improve localization of a drone. In,: 23rd International Symposium on Measurement and Control in Robotics (ISMCR). Budapest, Hungary, vol. 2020, pp. 1–5 (2020). https://doi.org/10.1109/ISMCR51255.2020.9263754
Sonoda, T., Grunnet-Jeps, A.: Depth image compression by colorization for Intel® RealSense™ Depth Cameras. https://dev.intelrealsense.com/docs/depth-image-compression-by-colorization-for-intel-realsense-depth-cameras
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Minervini, A. et al. (2024). Enhanced Localization of ArUco Markers for Autonomous Robotics: A Comparative Study. In: Secchi, C., Marconi, L. (eds) European Robotics Forum 2024. ERF 2024. Springer Proceedings in Advanced Robotics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-031-76424-0_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-76424-0_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-76423-3
Online ISBN: 978-3-031-76424-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)