Skip to main content

Enhanced Localization of ArUco Markers for Autonomous Robotics: A Comparative Study

  • Conference paper
  • First Online:
European Robotics Forum 2024 (ERF 2024)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 32))

Included in the following conference series:

  • 64 Accesses

Abstract

Autonomous drone technology increasingly enables their use in diverse applications, offering cost and time benefits in precision agriculture and surveillance. They are especially efficient in search and rescue and exploring hard-to-access areas.

Navigating indoor settings and partially known environments poses significant challenges in autonomous robotics. This paper introduces a novel method that leverages depth image data to substantially improve performance in these contexts. We elucidate the method’s design, showcasing its dependability and advantages over conventional approaches. Furthermore, the paper delineates the critical procedures for effective autonomous robot guidance, tackling complex obstacles inherent to the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abderahman, R., Alireza, A., Karim, R., Horst, T.: Drones in agriculture: a review and bibliometric analysis. Comput. Electron. Agric. 198 (2022). https://doi.org/10.1016/j.compag.2022.107017

  2. Kulbacki, Marek, Segen, J., et al.: Survey of drones for agriculture automation from planting to harvest. In: 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES) (2018). https://doi.org/10.1109/INES.2018.8523943

  3. Yunus, K., et al.: The potential use of unmanned aircraft systems (drones) in mountain search and rescue operations. Am. J. Emerg. Med. 36, 583–588 (2018). https://doi.org/10.1016/j.ajem.2017.09.025

    Article  MATH  Google Scholar 

  4. OpenCV, Detection of ArUco Markers. https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html

  5. Ferrão, J., Dias, P., Neves, A.J.R.: Detection of Aruco markers using the quadrilateral sum conjuncture. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 363–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_41

    Chapter  MATH  Google Scholar 

  6. Berral-Soler, R., Muñoz-Salinas, R., Medina-Carnicer, R., Marín-Jiménez, M.: DeepArUco: marker detection and classification in challenging lighting conditions. In: Iberian Conference on Pattern Recognition and Image Analysis, pp. 199–210 (2023). https://doi.org/10.1007/978-3-031-36616-1_16m

  7. Li, B., Wang, B, Tan, X., Wu, J., Wei, L.: Corner location and recognition of single ArUco marker under occlusion based on YOLO algorithm. J. Electron. Imaging, 30 (2021). https://doi.org/10.1117/1.JEI.30.3.033012

  8. Nahangi, M., Heins, A., Mccabe, B., Schoellig, A.: Automated localization of UAVs in GPS-denied indoor construction environments using fiducial markers. In: 35th International Symposium on Automation and Robotics in Construction (ISARC 2018). https://doi.org/10.22260/ISARC2018/0012

  9. Mráz, E., Rodina, J., A. Babinec: Using fiducial markers to improve localization of a drone. In,: 23rd International Symposium on Measurement and Control in Robotics (ISMCR). Budapest, Hungary, vol. 2020, pp. 1–5 (2020). https://doi.org/10.1109/ISMCR51255.2020.9263754

  10. Sonoda, T., Grunnet-Jeps, A.: Depth image compression by colorization for Intel® RealSense™ Depth Cameras. https://dev.intelrealsense.com/docs/depth-image-compression-by-colorization-for-intel-realsense-depth-cameras

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Minervini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Minervini, A. et al. (2024). Enhanced Localization of ArUco Markers for Autonomous Robotics: A Comparative Study. In: Secchi, C., Marconi, L. (eds) European Robotics Forum 2024. ERF 2024. Springer Proceedings in Advanced Robotics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-031-76424-0_27

Download citation

Publish with us

Policies and ethics