Abstract
Hyper-redundant Robotic Manipulators (HRMs) offer great dexterity and flexibility of operation, but solving Inverse Kinematics (IK) is challenging. In this work, we introduce VO-FABRIK, an algorithm combining Forward and Backward Reaching Inverse Kinematics (FABRIK) for repeatable deterministic IK computation, and an approach inspired from velocity obstacles to perform path planning under collision and joint limits constraints. We show preliminary results on an industrial HRM with 19 actuated joints. Our algorithm achieves good performance where a state-of-the-art IK solver fails.
C. Morasso and D. Meli—Equal Contribution
This work has been supported by Hibot Corp.
The authors thank Prof. Joshua Vaughan (Univ. Louisiana at Lafayette) for his technical support, and Prof. Paolo Fiorini (Univ. Verona) for his mentoring.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Solid angles and joint limits can be converted to pitch and yaw by applying simple 2D projections, depending on the kinematic model of the robot.
- 2.
Collision checking is managed via MoveIt (https://moveit.ros.org/), motion planning is based on VO. BioIK minimizes joint displacement.
References
Aristidou, A., Lasenby, J.: Fabrik: a fast, iterative solver for the inverse kinematics problem. Graph. Models 73(5), 243–260 (2011)
Bonanni, L., et al.: Monte Carlo planning for mobile robots in large action spaces with velocity obstacles. In: Proceeding of the 10th Italian Workshop on Artificial Intelligence and Robotics (AIRO) (2023)
Claes, D., et al.: Collision avoidance under bounded localization uncertainty. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1192–1198. IEEE (2012)
Corsi, D., et al.: Formal verification of neural networks for safety-critical tasks in deep reinforcement learning. In: Uncertainty in Artificial Intelligence, pp. 333–343 PMLR (2021)
Deo, A.S., Walker, I.D.: Minimum effort inverse kinematics for redundant manipulators. IEEE Trans. Robot. Autom. 13(5), 767–775 (1997)
Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. (1998)
Ginesi, M., et al.: Dynamic movement primitives: volumetric obstacle avoidance using dynamic potential functions. J. Intell. Robot. Syst. 101, 1–20 (2021)
Kouabon, A.J., et al.: A learning framework to inverse kinematics of high DOF redundant manipulators. Mech. Mach. Theory 153, 103978 (2020)
Mu, Z., et al.: A segmented geometry method for kinematics and configuration planning of spatial hyper-redundant manipulators. IEEE Trans. Syst. Man, Cybern. Syst. 50(5), 1746–1756 (2018)
Mu, Z., et al.: Hyper-redundant manipulators for operations in confined space: typical applications, key technologies, and grand challenges. IEEE Trans. Aerosp. Electron. Syst. (2022)
Ruppel, P., et al.: Cost functions to specify full-body motion and multi-goal manipulation tasks. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 3152–3159 (2018)
Ruppel, P., Hendrich, N., Starke, S., Zhang, J.: Cost functions to specify full-body motion and multi-goal manipulation tasks. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 3152–3159. IEEE (2018)
Santos, P.C., et al.: M-fabrik: a new inverse kinematics approach to mobile manipulator robots based on fabrik. IEEE Access (2020)
Siciliano, B., Khatib, O., Kröger, T.: Springer Handbook of Robotics, vol. 200. Springer (2008)
Wang, J., Li, Y., Zhao, X.: Inverse kinematics and control of a 7-DOF redundant manipulator based on the closed-loop algorithm. Int. J. Adv. Rob. Syst. 7(4), 37 (2010)
Zhao, L., et al.: Collision-free kinematics for hyper-redundant manipulators in dynamic scenes using optimal velocity obstacles. Int. J. Adv. Robot. Syst. (2021)
Zhong, J., Wang, T., Cheng, L.: Collision-free path planning for welding manipulator via hybrid algorithm of deep reinforcement learning and inverse kinematics. Complex Intelli. Syst. 1–14 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Morasso, C., Meli, D., Divet, Y., Sessa, S., Farinelli, A. (2024). Planning and Inverse Kinematics of Hyper-Redundant Manipulators with VO-FABRIK. In: Secchi, C., Marconi, L. (eds) European Robotics Forum 2024. ERF 2024. Springer Proceedings in Advanced Robotics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-031-76424-0_35
Download citation
DOI: https://doi.org/10.1007/978-3-031-76424-0_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-76423-3
Online ISBN: 978-3-031-76424-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)