Skip to main content

Planning and Inverse Kinematics of Hyper-Redundant Manipulators with VO-FABRIK

  • Conference paper
  • First Online:
European Robotics Forum 2024 (ERF 2024)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 32))

Included in the following conference series:

  • 65 Accesses

Abstract

Hyper-redundant Robotic Manipulators (HRMs) offer great dexterity and flexibility of operation, but solving Inverse Kinematics (IK) is challenging. In this work, we introduce VO-FABRIK, an algorithm combining Forward and Backward Reaching Inverse Kinematics (FABRIK) for repeatable deterministic IK computation, and an approach inspired from velocity obstacles to perform path planning under collision and joint limits constraints. We show preliminary results on an industrial HRM with 19 actuated joints. Our algorithm achieves good performance where a state-of-the-art IK solver fails.

C. Morasso and D. Meli—Equal Contribution

This work has been supported by Hibot Corp.

The authors thank Prof. Joshua Vaughan (Univ. Louisiana at Lafayette) for his technical support, and Prof. Paolo Fiorini (Univ. Verona) for his mentoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Solid angles and joint limits can be converted to pitch and yaw by applying simple 2D projections, depending on the kinematic model of the robot.

  2. 2.

    Collision checking is managed via MoveIt (https://moveit.ros.org/), motion planning is based on VO. BioIK minimizes joint displacement.

References

  1. Aristidou, A., Lasenby, J.: Fabrik: a fast, iterative solver for the inverse kinematics problem. Graph. Models 73(5), 243–260 (2011)

    Article  MATH  Google Scholar 

  2. Bonanni, L., et al.: Monte Carlo planning for mobile robots in large action spaces with velocity obstacles. In: Proceeding of the 10th Italian Workshop on Artificial Intelligence and Robotics (AIRO) (2023)

    Google Scholar 

  3. Claes, D., et al.: Collision avoidance under bounded localization uncertainty. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1192–1198. IEEE (2012)

    Google Scholar 

  4. Corsi, D., et al.: Formal verification of neural networks for safety-critical tasks in deep reinforcement learning. In: Uncertainty in Artificial Intelligence, pp. 333–343 PMLR (2021)

    Google Scholar 

  5. Deo, A.S., Walker, I.D.: Minimum effort inverse kinematics for redundant manipulators. IEEE Trans. Robot. Autom. 13(5), 767–775 (1997)

    Article  MATH  Google Scholar 

  6. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. (1998)

    Google Scholar 

  7. Ginesi, M., et al.: Dynamic movement primitives: volumetric obstacle avoidance using dynamic potential functions. J. Intell. Robot. Syst. 101, 1–20 (2021)

    Article  Google Scholar 

  8. Kouabon, A.J., et al.: A learning framework to inverse kinematics of high DOF redundant manipulators. Mech. Mach. Theory 153, 103978 (2020)

    Article  MATH  Google Scholar 

  9. Mu, Z., et al.: A segmented geometry method for kinematics and configuration planning of spatial hyper-redundant manipulators. IEEE Trans. Syst. Man, Cybern. Syst. 50(5), 1746–1756 (2018)

    Article  MATH  Google Scholar 

  10. Mu, Z., et al.: Hyper-redundant manipulators for operations in confined space: typical applications, key technologies, and grand challenges. IEEE Trans. Aerosp. Electron. Syst. (2022)

    Google Scholar 

  11. Ruppel, P., et al.: Cost functions to specify full-body motion and multi-goal manipulation tasks. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 3152–3159 (2018)

    Google Scholar 

  12. Ruppel, P., Hendrich, N., Starke, S., Zhang, J.: Cost functions to specify full-body motion and multi-goal manipulation tasks. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 3152–3159. IEEE (2018)

    Google Scholar 

  13. Santos, P.C., et al.: M-fabrik: a new inverse kinematics approach to mobile manipulator robots based on fabrik. IEEE Access (2020)

    Google Scholar 

  14. Siciliano, B., Khatib, O., Kröger, T.: Springer Handbook of Robotics, vol. 200. Springer (2008)

    Google Scholar 

  15. Wang, J., Li, Y., Zhao, X.: Inverse kinematics and control of a 7-DOF redundant manipulator based on the closed-loop algorithm. Int. J. Adv. Rob. Syst. 7(4), 37 (2010)

    Article  MATH  Google Scholar 

  16. Zhao, L., et al.: Collision-free kinematics for hyper-redundant manipulators in dynamic scenes using optimal velocity obstacles. Int. J. Adv. Robot. Syst. (2021)

    Google Scholar 

  17. Zhong, J., Wang, T., Cheng, L.: Collision-free path planning for welding manipulator via hybrid algorithm of deep reinforcement learning and inverse kinematics. Complex Intelli. Syst. 1–14 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Meli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morasso, C., Meli, D., Divet, Y., Sessa, S., Farinelli, A. (2024). Planning and Inverse Kinematics of Hyper-Redundant Manipulators with VO-FABRIK. In: Secchi, C., Marconi, L. (eds) European Robotics Forum 2024. ERF 2024. Springer Proceedings in Advanced Robotics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-031-76424-0_35

Download citation

Publish with us

Policies and ethics