Abstract
Recent developments show one-shot region of interest knowledge transfer across category level objects utilizing implicit neural networks. This work extends the current state of the art with a hybrid global-local feature extraction and documents the first practical application of this technology targeting robotic surface processing.
This work was accomplished within the Lighthouse project supported by the Austrian Institute of Technology (AIT).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Zeng, X., Zhu, G., Gao, Z., Ji, R., Ansari, J., Lu, C.: Surface polishing by industrial robots: a review. Int. J. Adv. Manuf. Technol. 125(9â10), 3981â4012 (2023)
Wen, Y., Hu, J. , Pagilla, P.R.: A novel robotic system for finishing of freeform surfaces. In: International Conference on Robotics and Automation (ICRA), pp. 5571â5577. IEEE (2019)
Barata, J., Cardoso, J.C., Cunha, P.R.: Mass customization and mass personalization meet at the crossroads of Industry 4.0: a case of augmented digital engineering. Syst. Eng. (2023)
Simeonov, A., et al.: âNeural descriptor fields: Se (3)-equivariant object representations for manipulation. In: International Conference on Robotics and Automation (ICRA), pp. 6394-6400. IEEE (2022)
Qi, C.R., et al.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEE CVPR, pp. 652â660 (2017)
Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional occupancy networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 523â540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_31
Pratheepkumar, A., Ikeda, M., Hofmann, M., Pichler, A., Vincze, M.: Surface region of interest retrieval for 3D objects with implicit neural region descriptor fields. (Submitted to International Conference on Robotics and Automation (ICRA)) (2024). unpublished
Liu, F., Liu, X.: Learning implicit functions for topology-varying dense 3d shape correspondence. NeurIPS 33, 4823â4834 (2020)
Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object reconstruction from a single image. In: Proceedings of the IEEE CVPR, pp. 605â613 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Âİ 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pratheepkumar, A., Ikeda, M., Pichler, A., Vincze, M. (2024). Towards Robotic 3D Surface Processing with Global Local Neural Region Descriptor Fields. In: Secchi, C., Marconi, L. (eds) European Robotics Forum 2024. ERF 2024. Springer Proceedings in Advanced Robotics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-031-76424-0_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-76424-0_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-76423-3
Online ISBN: 978-3-031-76424-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)