Skip to main content

Towards Robotic 3D Surface Processing with Global Local Neural Region Descriptor Fields

  • Conference paper
  • First Online:
European Robotics Forum 2024 (ERF 2024)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 32))

Included in the following conference series:

  • 70 Accesses

Abstract

Recent developments show one-shot region of interest knowledge transfer across category level objects utilizing implicit neural networks. This work extends the current state of the art with a hybrid global-local feature extraction and documents the first practical application of this technology targeting robotic surface processing.

This work was accomplished within the Lighthouse project supported by the Austrian Institute of Technology (AIT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zeng, X., Zhu, G., Gao, Z., Ji, R., Ansari, J., Lu, C.: Surface polishing by industrial robots: a review. Int. J. Adv. Manuf. Technol. 125(9–10), 3981–4012 (2023)

    Article  MATH  Google Scholar 

  2. Wen, Y., Hu, J. , Pagilla, P.R.: A novel robotic system for finishing of freeform surfaces. In: International Conference on Robotics and Automation (ICRA), pp. 5571–5577. IEEE (2019)

    Google Scholar 

  3. Barata, J., Cardoso, J.C., Cunha, P.R.: Mass customization and mass personalization meet at the crossroads of Industry 4.0: a case of augmented digital engineering. Syst. Eng. (2023)

    Google Scholar 

  4. Simeonov, A., et al.: “Neural descriptor fields: Se (3)-equivariant object representations for manipulation. In: International Conference on Robotics and Automation (ICRA), pp. 6394-6400. IEEE (2022)

    Google Scholar 

  5. Qi, C.R., et al.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEE CVPR, pp. 652–660 (2017)

    Google Scholar 

  6. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional occupancy networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 523–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_31

    Chapter  Google Scholar 

  7. Pratheepkumar, A., Ikeda, M., Hofmann, M., Pichler, A., Vincze, M.: Surface region of interest retrieval for 3D objects with implicit neural region descriptor fields. (Submitted to International Conference on Robotics and Automation (ICRA)) (2024). unpublished

    Google Scholar 

  8. Liu, F., Liu, X.: Learning implicit functions for topology-varying dense 3d shape correspondence. NeurIPS 33, 4823–4834 (2020)

    MATH  Google Scholar 

  9. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object reconstruction from a single image. In: Proceedings of the IEEE CVPR, pp. 605–613 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish Pratheepkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Âİ 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pratheepkumar, A., Ikeda, M., Pichler, A., Vincze, M. (2024). Towards Robotic 3D Surface Processing with Global Local Neural Region Descriptor Fields. In: Secchi, C., Marconi, L. (eds) European Robotics Forum 2024. ERF 2024. Springer Proceedings in Advanced Robotics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-031-76424-0_39

Download citation

Publish with us

Policies and ethics