Skip to main content

Closing the Sim-to-Real Gap for Dynamics-Static Friction and Inertial Parameters: A Franka Robot Case Study

  • Conference paper
  • First Online:
European Robotics Forum 2024 (ERF 2024)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 32))

Included in the following conference series:

  • 69 Accesses

Abstract

This exploration addresses challenges in transitioning robotic capabilities from simulation to real-world applications, focusing on disparities between simulated and real environments. It tackles issues like dynamic variations and parameter sensitivity with innovative solutions, introducing the SIPE benchmark for evaluating parameter estimation algorithms. Cutting-edge approaches such as Auto-Tuned Sim-to-Real Transfer and Adapting Simulation Randomization are examined, emphasizing the importance of experience and precise parameter estimation. The article thoroughly investigates dynamic and static friction, proposing practical solutions. The conclusion offers a comparative analysis of simulators and strategies to minimize disparities, contributing valuable insights to the simulation-to-real transfer discourse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mehta, B., et al.: A user’s guide to calibrating robotic simulators. In: Kober, J., Ramos, F., Tomlin, C. (eds.) Proceedings of the 2020 Conference on Robot Learning, vol. 155. Proceedings of Machine Learning Research, pp. 1326–1340. PMLR (2021). https://proceedings.mlr.press/v155/mehta21a.html

  2. Du, Y., et al.: Auto-tuned sim-to-real transfer. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 1290–1296 (2021). https://doi.org/10.1109/ICRA48506.2021.9562091

  3. Chebotar,Y., et al.: Closing the sim-to-real loop: adapting simulation randomization with real world experience. In: 2019 International Conference on Robotics and Automation (ICRA), pp.8973–8979 (2019). https://doi.org/10.1109/ICRA.2019.8793789

  4. Gaz, C., et al.: Dynamic identification of the Franka Emika panda robot with retrieval of feasible parameters using penalty-based optimization. IEEE Robot. Autom. Lett. 4(4), 4147–4154 (2019). https://doi.org/10.1109/LRA.2019.2931248

    Article  MATH  Google Scholar 

  5. Gaz, C., et al.: Dynamic identification of the Franka Emika panda robot with retrieval of feasible parameters using penalty-based optimization. Supplementary Material (2019). https://inria.hal.science/hal-02265294

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bargellini, D., Govoni, A., Zanella, R., Palli, G. (2024). Closing the Sim-to-Real Gap for Dynamics-Static Friction and Inertial Parameters: A Franka Robot Case Study. In: Secchi, C., Marconi, L. (eds) European Robotics Forum 2024. ERF 2024. Springer Proceedings in Advanced Robotics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-031-76424-0_59

Download citation

Publish with us

Policies and ethics