Abstract
This exploration addresses challenges in transitioning robotic capabilities from simulation to real-world applications, focusing on disparities between simulated and real environments. It tackles issues like dynamic variations and parameter sensitivity with innovative solutions, introducing the SIPE benchmark for evaluating parameter estimation algorithms. Cutting-edge approaches such as Auto-Tuned Sim-to-Real Transfer and Adapting Simulation Randomization are examined, emphasizing the importance of experience and precise parameter estimation. The article thoroughly investigates dynamic and static friction, proposing practical solutions. The conclusion offers a comparative analysis of simulators and strategies to minimize disparities, contributing valuable insights to the simulation-to-real transfer discourse.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Mehta, B., et al.: A user’s guide to calibrating robotic simulators. In: Kober, J., Ramos, F., Tomlin, C. (eds.) Proceedings of the 2020 Conference on Robot Learning, vol. 155. Proceedings of Machine Learning Research, pp. 1326–1340. PMLR (2021). https://proceedings.mlr.press/v155/mehta21a.html
Du, Y., et al.: Auto-tuned sim-to-real transfer. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 1290–1296 (2021). https://doi.org/10.1109/ICRA48506.2021.9562091
Chebotar,Y., et al.: Closing the sim-to-real loop: adapting simulation randomization with real world experience. In: 2019 International Conference on Robotics and Automation (ICRA), pp.8973–8979 (2019). https://doi.org/10.1109/ICRA.2019.8793789
Gaz, C., et al.: Dynamic identification of the Franka Emika panda robot with retrieval of feasible parameters using penalty-based optimization. IEEE Robot. Autom. Lett. 4(4), 4147–4154 (2019). https://doi.org/10.1109/LRA.2019.2931248
Gaz, C., et al.: Dynamic identification of the Franka Emika panda robot with retrieval of feasible parameters using penalty-based optimization. Supplementary Material (2019). https://inria.hal.science/hal-02265294
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bargellini, D., Govoni, A., Zanella, R., Palli, G. (2024). Closing the Sim-to-Real Gap for Dynamics-Static Friction and Inertial Parameters: A Franka Robot Case Study. In: Secchi, C., Marconi, L. (eds) European Robotics Forum 2024. ERF 2024. Springer Proceedings in Advanced Robotics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-031-76424-0_59
Download citation
DOI: https://doi.org/10.1007/978-3-031-76424-0_59
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-76423-3
Online ISBN: 978-3-031-76424-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)