Skip to main content

Electrolyzer Control Cabinet Wiring as a Holistic Approach

  • Conference paper
  • First Online:
European Robotics Forum 2024 (ERF 2024)

Abstract

The demand for green hydrogen is expected to increase in the next years. As a result, the market for suitable production means such as electrolyzers will also increase. An essential step in meeting this growth is automating production steps, which have so far been mainly manual. A crucial part of electrolyzer production is the control cabinet assembly and wiring. Automating this production step promises high economic potential and an increased output. In this context, this paper proposes a concept for automated control cabinet wiring using industrial robots. The control cabinet of an alkaline electrolyzer is taken as a reference object and analyzed regarding its hurdles for automation. Based on this analysis, a cabinet redesign is proposed yielding a higher automation potential. Subsequently, a concept for automated wire assembly and wiring is presented. The concept includes two industrial robots, enabling maximum flexibility regarding wire supply and control cabinet wiring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Federal Ministry for Economic Affairs and Climate Action (2023) Fortschreibung der Nationalen Wasserstoffstrategie. https://www.bmbf.de/. Accessed 13 Oct 2023

  2. Sood, S., Prakash, O., Boukerdja, M., et al.: Generic dynamical model of PEM electrolyser under intermittent sources. Energies 13, 6556 (2020)

    Article  MATH  Google Scholar 

  3. Smolinka, T., Wiebe, N., Sterchele, P., et al.: Study IndWEDe – brief overview: industrialisation of water electrolysis in Germany: opportunities and challenges for sustainable hydrogen for transport, electricity and heat, Berlin (2018)

    Google Scholar 

  4. Prior, J., Bartelt, M., Sinnemann, J., et al.: Investigation of the automation capability of electrolyzers production. Procedia CIRP 107, 718–723 (2022)

    Article  MATH  Google Scholar 

  5. Tempel, P., Eger, F., Lechler, A., et al.: Schaltschrankbau 4.0: Eine Studie über die Automatisierungs- und Digitalisierungspotentiale in der Fertigung von Schaltschränken und Schaltanlagen im klassischen Maschinen- und Anlagenbau, Stuttgart (2017)

    Google Scholar 

  6. Gebauer, D., Dirr, J., Reinhart, G.: Concept for robot-based cable assembly regarding industrial production. In: Schüppstuhl (Ed.) 2022 – Annals of Scientific Society for Assembly, Handling and Industrial Robotics, pp. 113–124 (2021)

    Google Scholar 

  7. Chang, P., Padir, T.: Sim2Real2Sim: bridging the gap between simulation and real-world in flexible object manipulation. In: Hu, R.-M. (ed.) The Fourth IEEE International Conference on Robotic Computing: IRC 2020: Proceedings, 9–11 November 2020, virtual conference. IEEE, Piscataway, NJ, pp. 56–62 (2020)

    Google Scholar 

  8. Zhao, C., Liu, Y., Lu, Z.: Wiring simulation of electric control cabinet based on industrial robot. In: Yang, H., Liu, H., Zou, J., et al. (eds.) Intelligent Robotics and Applications: 16th International Conference, ICIRA 2023, Hangzhou, China, July 5–7, 2023, Proceedings, Part VIII, 1st ed. 2023, vol. 14274, pp. 454–462. Springer Nature Singapore; Imprint Springer, Singapore (2023)

    Google Scholar 

  9. Hefner, F., Schmidbauer, S., Franke, J.: Pose error correction of a robot end-effector using a 3D visual sensor for control cabinet wiring. Procedia CIRP 93, 1133–1138 (2020)

    Article  Google Scholar 

  10. Sardelis, A., Zacharaki, N.-C., Arkouli, Z., et al.: 2-Stage vision system for robotic handling of flexible objects. Procedia CIRP 97, 491–496 (2021)

    Article  Google Scholar 

  11. Bartelt, S., Bartelt, M., Kuhlenkötter, B.: Method for creating a control cabinet model with realistic wires. In: Herberger, D., Hübner, M. (eds.) Proceedings of the Conference on Production Systems and Logistics: CPSL 2023-2, pp. 486–495 (2023)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Federal Ministry of Education and Research (BMBF) under the grant number 03HY113A within the research project H2Giga –FertiRob.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elías Milloch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Milloch, E., Bartelt, S., Brisse, M., Egel, R., Kuhlenkötter, B. (2024). Electrolyzer Control Cabinet Wiring as a Holistic Approach. In: Secchi, C., Marconi, L. (eds) European Robotics Forum 2024. ERF 2024. Springer Proceedings in Advanced Robotics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-031-76424-0_7

Download citation

Publish with us

Policies and ethics