Skip to main content

Unmasking Phishing Attempts: A Study on Detection in Spanish Emails

  • Conference paper
  • First Online:
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIARP 2024)

Abstract

Phishing, a pervasive cybersecurity issue, involves fraudulent attempts to obtain sensitive information and to provoke unintentional money transfers or malware downloads, among others, by disguising as trustworthy entities in electronic communications. This paper presents an innovative approach to phishing detection in Spanish emails using patterns represented as rules. Through a comprehensive, still efficient analysis of emails, we identify interpretable recurring patterns and relevant phrases used in phishing attempts. These phrases and words often aim to persuade victims into revealing personal or financial information. These patterns are translated into a set of rules that are applied to evaluate incoming emails. Additionally, a proof-of-concept is carried out using a phishing data set of Spanish emails created for this study. Our method achieved promising results in identifying phishing attempts, providing an additional layer of security for email users. Moreover, this approach can be adapted to detect phishing in other languages, making it a potentially global solution to this persistent cybersecurity issue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A favicon, or “favorite icon”, is a small 16\(\,\times \,\)16 pixel icon used in web browsers to represent a site or web page.

  2. 2.

    URL is an acronym for Uniform Resource Locator and is a reference to a unique resource on the Internet.

References

  1. Alhogail, A., Alsabih, A.: Applying machine learning and natural language processing to detect phishing email. Comput. Secur. 110, 102414 (2021)

    Article  Google Scholar 

  2. Ariyadasa, S., Fernando, S., Fernando, S.: Detecting phishing attacks using a combined model of LSTM and CNN. Int. J. Adv. Appl. Sci 7(7), 56–67 (2020)

    Article  Google Scholar 

  3. Banu, R., Anand, M., Kamath, A., Ashika, S., Ujwala, H., Harshitha, S.: Detecting phishing attacks using natural language processing and machine learning. In: 2019 International Conference on Intelligent Computing and Control Systems (ICCS), pp. 1210–1214. IEEE (2019)

    Google Scholar 

  4. Bountakas, P., Xenakis, C.: Helphed: hybrid ensemble learning phishing email detection. J. Netw. Comput. Appl. 210, 103545 (2023)

    Article  Google Scholar 

  5. Boussougou, M.K.M., Jin, S., Chang, D., Park, D.J.: Korean voice phishing text classification performance analysis using machine learning techniques. In: Proceedings of the Korea Information Processing Society Conference, pp. 297–299. Korea Information Processing Society (2021)

    Google Scholar 

  6. Bozkir, A.S., Aydos, M.: LogoSense: a companion hog based logo detection scheme for phishing web page and e-mail brand recognition. Comput. Secur. 95, 101855 (2020)

    Article  Google Scholar 

  7. Bustio-Martínez, L., Álvarez-Carmona, M.A., Herrera-Semenets, V., Feregrino-Uribe, C., Cumplido, R.: A lightweight data representation for phishing URLs detection in IoT environments. Inf. Sci. 603, 42–59 (2022)

    Article  Google Scholar 

  8. Bustio-Martínez, L., et al.: Towards automatic principles of persuasion detection using machine learning approach. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds.) IWAIPR 2023. LNCS, vol. 14335, pp. 155–166. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-49552-6_14

    Chapter  Google Scholar 

  9. Cohen, W.W.: Fast effective rule induction. In: Machine Learning Proceedings 1995, pp. 115–123. Elsevier (1995)

    Google Scholar 

  10. Dilhara, B.: Phishing URL detection: a novel hybrid approach using long short-term memory and gated recurrent units. Int. J. Compu. Appl. 975, 8887 (2021)

    Google Scholar 

  11. Europol: Phishing gang behind several million euros worth of losses busted in Belgium and the Netherlands (2022). https://www.europol.europa.eu/media-press/newsroom/news/phishing-gang-behind-several-million-euros-worth-of-losses-busted-in-belgium-and-netherlands. Accessed 31 Jan 2024

  12. Fürnkranz, J., Widmer, G.: Incremental reduced error pruning. In: Machine Learning Proceedings 1994, pp. 70–77. Elsevier (1994)

    Google Scholar 

  13. Herrera-Semenets, V., Bustio-Martínez, L., Hernández-León, R., van den Berg, J.: A multi-measure feature selection algorithm for efficacious intrusion detection. Knowl.-Based Syst. 227, 107264 (2021)

    Article  Google Scholar 

  14. Hiransha, M., Unnithan, N.A., Vinayakumar, R., Soman, K., Verma, A.: Deep learning based phishing e-mail detection. In: Proceedings of 1st AntiPhishing Shared Pilot 4th ACM International Workshop Security Privacy Analysis (IWSPA), pp. 1–5. Tempe, AZ, USA (2018)

    Google Scholar 

  15. Lee, J., Xin, Z., See, M.N.P., Sabharwal, K., Apruzzese, G., Divakaran, D.M.: Attacking logo-based phishing website detectors with adversarial perturbations. In: Tsudik, G., Conti, M., Liang, K., Smaragdakis, G. (eds.) ESORICS 2023. LNCS, vol. 14346, pp. 162–182. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-51479-1_9

    Chapter  Google Scholar 

  16. Lee, M., Park, E.: Real-time Korean voice phishing detection based on machine learning approaches. J. Ambient. Intell. Humaniz. Comput. 14(7), 8173–8184 (2023)

    Article  Google Scholar 

  17. Moussavou Boussougou, M.K., Park, D.J.: Attention-based 1D CNN-BiLSTM hybrid model enhanced with fasttext word embedding for Korean voice phishing detection. Mathematics 11(14), 3217 (2023)

    Article  Google Scholar 

  18. Naqvi, B., Perova, K., Farooq, A., Makhdoom, I., Oyedeji, S., Porras, J.: Mitigation strategies against the phishing attacks: a systematic literature review. Comput. Secur. 103387 (2023)

    Google Scholar 

  19. Pérez-Guadarramas, Y., Simón-Cuevas, A., Romero, F.P., Olivas, J.A.: Topic modeling based on OWA aggregation to improve the semantic focusing on relevant information extraction problems. In: Rivera, G., Cruz-Reyes, L., Dorronsoro, B., Rosete, A. (eds.) Data Analytics and Computational Intelligence: Novel Models, Algorithms and Applications. Studies in Big Data, vol. 132, pp. 17–42. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38325-0_2

    Chapter  Google Scholar 

  20. Proofpoint: 2023 state of the phish: Europe and the middle east (2023). https://www.proofpoint.com/uk/resources/threat-reports/state-of-phish. Accessed 31 Jan 2024

  21. Ra, V., HBa, B.G., Ma, A.K., KPa, S., Poornachandran, P., Verma, A.: Deepanti-phishnet: applying deep neural networks for phishing email detection. In: Proceedings of 1st AntiPhishing Shared Pilot 4th ACM Int. Workshop Security Privacy Analysis (IWSPA), pp. 1–11. Tempe, AZ, USA (2018)

    Google Scholar 

  22. Sahingoz, O.K., Buber, E., Demir, O., Diri, B.: Machine learning based phishing detection from URLs. Expert Syst. Appl. 117, 345–357 (2019)

    Article  Google Scholar 

  23. sklearn: Decisiontreeclassifier (2024). https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html. Accessed 5 Feb 2024

  24. Statista: Los idiomas mas hablados en el mundo en 2023 (2024). https://es.statista.com/estadisticas/635631/los-idiomas-mas-hablados-en-el-mundo/. Accessed 31 Jan 2024

  25. Streamlit: Api reference (2024). https://docs.streamlit.io/library/api-reference. Accessed 5 Feb 2024

  26. Thakur, K., Ali, M.L., Obaidat, M.A., Kamruzzaman, A.: A systematic review on deep-learning-based phishing email detection. Electronics 12(21), 4545 (2023)

    Article  Google Scholar 

  27. Vazhayil, A., Vinayakumar, R., Soman, K.: Comparative study of the detection of malicious URLs using shallow and deep networks. In: 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–6. IEEE (2018)

    Google Scholar 

  28. Wang, M., Zang, X., Cao, J., Zhang, B., Li, S.: Phishhunter: detecting camouflaged IDN-based phishing attacks via Siamese neural network. Comput. Secur. 138, 103668 (2024)

    Article  Google Scholar 

  29. Wei, W., Ke, Q., Nowak, J., Korytkowski, M., Scherer, R., Woźniak, M.: Accurate and fast URL phishing detector: a convolutional neural network approach. Comput. Netw. 178, 107275 (2020)

    Article  Google Scholar 

  30. Yang, J., Lee, C., Kim, S.: Development and utilization of voice phishing prevention service through koBERT-based voice call analysis. KIISE Trans. Comput. Pract 29, 205–213 (2023)

    Article  Google Scholar 

  31. Zhang, Q., Bu, Y., Chen, B., Zhang, S., Lu, X.: Research on phishing webpage detection technology based on CNN-BiLSTM algorithm. J. Phys. Conf. Ser. 1738, 012131 (2021). IOP Publishing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lázaro Bustio-Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Herrera-Semenets, V., Bustio-Martínez, L., Pérez-Guadarramas, Y., Ángel González-Ordiano, J., van den Berg, J. (2025). Unmasking Phishing Attempts: A Study on Detection in Spanish Emails. In: Hernández-García, R., Barrientos, R.J., Velastin, S.A. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2024. Lecture Notes in Computer Science, vol 15369. Springer, Cham. https://doi.org/10.1007/978-3-031-76604-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-76604-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-76603-9

  • Online ISBN: 978-3-031-76604-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics