Abstract
Phishing, a pervasive cybersecurity issue, involves fraudulent attempts to obtain sensitive information and to provoke unintentional money transfers or malware downloads, among others, by disguising as trustworthy entities in electronic communications. This paper presents an innovative approach to phishing detection in Spanish emails using patterns represented as rules. Through a comprehensive, still efficient analysis of emails, we identify interpretable recurring patterns and relevant phrases used in phishing attempts. These phrases and words often aim to persuade victims into revealing personal or financial information. These patterns are translated into a set of rules that are applied to evaluate incoming emails. Additionally, a proof-of-concept is carried out using a phishing data set of Spanish emails created for this study. Our method achieved promising results in identifying phishing attempts, providing an additional layer of security for email users. Moreover, this approach can be adapted to detect phishing in other languages, making it a potentially global solution to this persistent cybersecurity issue.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A favicon, or “favorite icon”, is a small 16\(\,\times \,\)16 pixel icon used in web browsers to represent a site or web page.
- 2.
URL is an acronym for Uniform Resource Locator and is a reference to a unique resource on the Internet.
References
Alhogail, A., Alsabih, A.: Applying machine learning and natural language processing to detect phishing email. Comput. Secur. 110, 102414 (2021)
Ariyadasa, S., Fernando, S., Fernando, S.: Detecting phishing attacks using a combined model of LSTM and CNN. Int. J. Adv. Appl. Sci 7(7), 56–67 (2020)
Banu, R., Anand, M., Kamath, A., Ashika, S., Ujwala, H., Harshitha, S.: Detecting phishing attacks using natural language processing and machine learning. In: 2019 International Conference on Intelligent Computing and Control Systems (ICCS), pp. 1210–1214. IEEE (2019)
Bountakas, P., Xenakis, C.: Helphed: hybrid ensemble learning phishing email detection. J. Netw. Comput. Appl. 210, 103545 (2023)
Boussougou, M.K.M., Jin, S., Chang, D., Park, D.J.: Korean voice phishing text classification performance analysis using machine learning techniques. In: Proceedings of the Korea Information Processing Society Conference, pp. 297–299. Korea Information Processing Society (2021)
Bozkir, A.S., Aydos, M.: LogoSense: a companion hog based logo detection scheme for phishing web page and e-mail brand recognition. Comput. Secur. 95, 101855 (2020)
Bustio-Martínez, L., Álvarez-Carmona, M.A., Herrera-Semenets, V., Feregrino-Uribe, C., Cumplido, R.: A lightweight data representation for phishing URLs detection in IoT environments. Inf. Sci. 603, 42–59 (2022)
Bustio-Martínez, L., et al.: Towards automatic principles of persuasion detection using machine learning approach. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds.) IWAIPR 2023. LNCS, vol. 14335, pp. 155–166. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-49552-6_14
Cohen, W.W.: Fast effective rule induction. In: Machine Learning Proceedings 1995, pp. 115–123. Elsevier (1995)
Dilhara, B.: Phishing URL detection: a novel hybrid approach using long short-term memory and gated recurrent units. Int. J. Compu. Appl. 975, 8887 (2021)
Europol: Phishing gang behind several million euros worth of losses busted in Belgium and the Netherlands (2022). https://www.europol.europa.eu/media-press/newsroom/news/phishing-gang-behind-several-million-euros-worth-of-losses-busted-in-belgium-and-netherlands. Accessed 31 Jan 2024
Fürnkranz, J., Widmer, G.: Incremental reduced error pruning. In: Machine Learning Proceedings 1994, pp. 70–77. Elsevier (1994)
Herrera-Semenets, V., Bustio-Martínez, L., Hernández-León, R., van den Berg, J.: A multi-measure feature selection algorithm for efficacious intrusion detection. Knowl.-Based Syst. 227, 107264 (2021)
Hiransha, M., Unnithan, N.A., Vinayakumar, R., Soman, K., Verma, A.: Deep learning based phishing e-mail detection. In: Proceedings of 1st AntiPhishing Shared Pilot 4th ACM International Workshop Security Privacy Analysis (IWSPA), pp. 1–5. Tempe, AZ, USA (2018)
Lee, J., Xin, Z., See, M.N.P., Sabharwal, K., Apruzzese, G., Divakaran, D.M.: Attacking logo-based phishing website detectors with adversarial perturbations. In: Tsudik, G., Conti, M., Liang, K., Smaragdakis, G. (eds.) ESORICS 2023. LNCS, vol. 14346, pp. 162–182. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-51479-1_9
Lee, M., Park, E.: Real-time Korean voice phishing detection based on machine learning approaches. J. Ambient. Intell. Humaniz. Comput. 14(7), 8173–8184 (2023)
Moussavou Boussougou, M.K., Park, D.J.: Attention-based 1D CNN-BiLSTM hybrid model enhanced with fasttext word embedding for Korean voice phishing detection. Mathematics 11(14), 3217 (2023)
Naqvi, B., Perova, K., Farooq, A., Makhdoom, I., Oyedeji, S., Porras, J.: Mitigation strategies against the phishing attacks: a systematic literature review. Comput. Secur. 103387 (2023)
Pérez-Guadarramas, Y., Simón-Cuevas, A., Romero, F.P., Olivas, J.A.: Topic modeling based on OWA aggregation to improve the semantic focusing on relevant information extraction problems. In: Rivera, G., Cruz-Reyes, L., Dorronsoro, B., Rosete, A. (eds.) Data Analytics and Computational Intelligence: Novel Models, Algorithms and Applications. Studies in Big Data, vol. 132, pp. 17–42. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38325-0_2
Proofpoint: 2023 state of the phish: Europe and the middle east (2023). https://www.proofpoint.com/uk/resources/threat-reports/state-of-phish. Accessed 31 Jan 2024
Ra, V., HBa, B.G., Ma, A.K., KPa, S., Poornachandran, P., Verma, A.: Deepanti-phishnet: applying deep neural networks for phishing email detection. In: Proceedings of 1st AntiPhishing Shared Pilot 4th ACM Int. Workshop Security Privacy Analysis (IWSPA), pp. 1–11. Tempe, AZ, USA (2018)
Sahingoz, O.K., Buber, E., Demir, O., Diri, B.: Machine learning based phishing detection from URLs. Expert Syst. Appl. 117, 345–357 (2019)
sklearn: Decisiontreeclassifier (2024). https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html. Accessed 5 Feb 2024
Statista: Los idiomas mas hablados en el mundo en 2023 (2024). https://es.statista.com/estadisticas/635631/los-idiomas-mas-hablados-en-el-mundo/. Accessed 31 Jan 2024
Streamlit: Api reference (2024). https://docs.streamlit.io/library/api-reference. Accessed 5 Feb 2024
Thakur, K., Ali, M.L., Obaidat, M.A., Kamruzzaman, A.: A systematic review on deep-learning-based phishing email detection. Electronics 12(21), 4545 (2023)
Vazhayil, A., Vinayakumar, R., Soman, K.: Comparative study of the detection of malicious URLs using shallow and deep networks. In: 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–6. IEEE (2018)
Wang, M., Zang, X., Cao, J., Zhang, B., Li, S.: Phishhunter: detecting camouflaged IDN-based phishing attacks via Siamese neural network. Comput. Secur. 138, 103668 (2024)
Wei, W., Ke, Q., Nowak, J., Korytkowski, M., Scherer, R., Woźniak, M.: Accurate and fast URL phishing detector: a convolutional neural network approach. Comput. Netw. 178, 107275 (2020)
Yang, J., Lee, C., Kim, S.: Development and utilization of voice phishing prevention service through koBERT-based voice call analysis. KIISE Trans. Comput. Pract 29, 205–213 (2023)
Zhang, Q., Bu, Y., Chen, B., Zhang, S., Lu, X.: Research on phishing webpage detection technology based on CNN-BiLSTM algorithm. J. Phys. Conf. Ser. 1738, 012131 (2021). IOP Publishing
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Herrera-Semenets, V., Bustio-Martínez, L., Pérez-Guadarramas, Y., Ángel González-Ordiano, J., van den Berg, J. (2025). Unmasking Phishing Attempts: A Study on Detection in Spanish Emails. In: Hernández-García, R., Barrientos, R.J., Velastin, S.A. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2024. Lecture Notes in Computer Science, vol 15369. Springer, Cham. https://doi.org/10.1007/978-3-031-76604-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-76604-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-76603-9
Online ISBN: 978-3-031-76604-6
eBook Packages: Computer ScienceComputer Science (R0)