Skip to main content

Towards Interactive Video Segmentation by Dynamic and Iterative Spanning Forest

  • Conference paper
  • First Online:
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIARP 2024)

Abstract

Interactive video segmentation aims to segment objects from videos using user information of object location. It allows for segmenting different objects from the same scene and has many applications, such as video editing and scene understanding. While in automatic video segmentation, the major challenges are temporal coherency and occlusion, interactive segmentation models must also handle unseen objects. This work proposes an interactive video segmentation strategy based on seed competition and user-drawn scribbles. Our proposal starts with a seed oversampling strategy and iteratively computes the optimum path forest for the seed set, maintaining the most relevant trees. Our Interactive Video Segmentation by Dynamic and Iterative Spanning Forest (iVSDISF) extends the Interactive Dynamic and Iterative Spanning Forest for videos, avoiding object leakage by dynamically creating trees at critical image positions. The proposed method is highly competitive with the state-of-the-art achieving the second highest score, in terms of IoU, considering all studied methods, and the best IoU among the ones without optical flow computation for SegTrackv2.

The authors thank the Pontifícia Universidade Católica de Minas Gerais – PUC-Minas, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES – (Grant PROAP 88887.842889/2023-00 – PUC/MG, Grant STIC-AMSUD 88887.878869/2023-00, Grant PDPG 88887.708960/2022-00 – PUC/MG - Informática, and Finance Code 001), the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (Grants 407242/2021-0, 306573/2022-9, 442950/2023-3 and 304711/2023-3), Fundação de Apoio à Pesquisa do Estado de Minas Gerais – FAPEMIG (Grant APQ-01079-23, Grant APQ-05058-23 and PCE-00417-24) and Fundação de Apoio à Pesquisa do Estado de São Paulo – FAPESP (Grant 2023/14427-8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avinash Ramakanth, S., Venkatesh Babu, R.: SeamSeg: video object segmentation using patch seams. In: CVPR, pp. 376–383 (2014)

    Google Scholar 

  2. Badrinarayanan, V., Budvytis, I., Cipolla, R.: Semi-supervised video segmentation using tree structured graphical models. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2751–2764 (2013)

    Article  Google Scholar 

  3. Badrinarayanan, V., Budvytis, I., Cipolla, R.: Mixture of trees probabilistic graphical model for video segmentation. IJCV 110, 14–29 (2014)

    Article  Google Scholar 

  4. Borlido Barcelos, I., Belém, F., Miranda, P., Falcão, A.X., do Patrocínio, Z.K.G., Guimarães, S.J.F.: Towards interactive image segmentation by dynamic and iterative spanning forest. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) DGMM 2021. LNCS, vol. 12708, pp. 351–364. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76657-3_25

    Chapter  Google Scholar 

  5. Barcelos, I.B., Belém, F.D.C., João, L.D.M., Patrocínio, Z.K.G.D., Falcão, A.X., Guimarães, S.J.F.: A comprehensive review and new taxonomy on superpixel segmentation. ACM Comput. Surv. 56(8) (2024). https://doi.org/10.1145/3652509

  6. Belém, F., Guimarães, S.J.F., Falcão, A.X.: Superpixel segmentation by object-based iterative spanning forest. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds.) CIARP 2018. LNCS, vol. 11401, pp. 334–341. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13469-3_39

    Chapter  Google Scholar 

  7. Belém, F.C., et al.: Novel arc-cost functions and seed relevance estimations for compact and accurate superpixels. JMIV 65(5), 770–786 (2023)

    Article  MathSciNet  Google Scholar 

  8. Belém, F.C., Guimarães, S.J.F., Falcão, A.X.: Superpixel segmentation using dynamic and iterative spanning forest. IEEE Sig. Process. Lett. 27, 1440–1444 (2020)

    Article  Google Scholar 

  9. Bragantini, J., Martins, S.B., Castelo-Fernandez, C., Falcão, A.X.: Graph-based image segmentation using dynamic trees. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds.) CIARP 2018. LNCS, vol. 11401, pp. 470–478. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13469-3_55

    Chapter  Google Scholar 

  10. Cai, Z., Wen, L., Lei, Z., Vasconcelos, N., Li, S.Z.: Robust deformable and occluded object tracking with dynamic graph. TIP 23(12), 5497–5509 (2014)

    MathSciNet  Google Scholar 

  11. Cappabianco, F.A., X, A.X.F., Yasuda, C.L., Udupa, J.K.: Brain tissue MR-image segmentation via optimum-path forest clustering. Comput. Vision Image Understand. 116(10), 1047–1059 (2012)

    Google Scholar 

  12. Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid. In: ACM SIGGRAPH 2007 Papers. SIGGRAPH ’07. ACM, New York, NY, USA (2007)

    Google Scholar 

  13. Chockalingam, P., Pradeep, N., Birchfield, S.: Adaptive fragments-based tracking of non-rigid objects using level sets. In: ICCV, pp. 1530–1537. IEEE (2009)

    Google Scholar 

  14. Condori, M.A.T., Mansilla, L.A.C., Miranda, P.A.V.: Bandeirantes: a graph-based approach for curve tracing and boundary tracking. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds.) ISMM 2017. LNCS, vol. 10225, pp. 95–106. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57240-6_8

    Chapter  Google Scholar 

  15. Dutt Jain, S., Xiong, B., Grauman, K.: FusionSeg: learning to combine motion and appearance for fully automatic segmentation of generic objects in videos. In: CVPR, pp. 3664–3673 (2017)

    Google Scholar 

  16. Faktor, A., Irani, M.: Video object segmentation by non-local consensus voting. In: Proceedings of the British Machine Vision Conference. British Machine Vision Association (2014)

    Google Scholar 

  17. Falcão, A., Bragantini, J.: The role of optimum connectivity in image segmentation: can the algorithm learn object information during the process? In: Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) DGCI 2019. LNCS, vol. 11414, pp. 180–194. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14085-4_15

    Chapter  Google Scholar 

  18. Falcão, A.X., Feng, C., Kustra, J., Telea, A.: Multiscale 2D medial axes and 3d surface skeletons by the image foresting transform. In: Skeletonization: Theory, Methods and Applications, p. 43 (2017)

    Google Scholar 

  19. Falcão, A.X., Stolfi, J., de Alencar Lotufo, R.: The image foresting transform: theory, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 19–29 (2004)

    Article  Google Scholar 

  20. Galvão, F.L., Guimarães, S.J.F., Falcão, A.X.: Image segmentation using dense and sparse hierarchies of superpixels. Pattern Recogn. 107532 (2020). https://doi.org/10.1016/j.patcog.2020.107532

  21. Godec, M., Roth, P.M., Bischof, H.: Hough-based tracking of non-rigid objects. Comput. Vis. Image Underst. 117(10), 1245–1256 (2013)

    Article  Google Scholar 

  22. Grundmann, M., Kwatra, V., Han, M., Essa, I.: Efficient hierarchical graph-based video segmentation. In: CVPR, pp. 2141–2148. IEEE (2010)

    Google Scholar 

  23. Hu, Y.-T., Huang, J.-B., Schwing, A.G.: Unsupervised video object segmentation using motion saliency-guided spatio-temporal propagation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 813–830. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_48

    Chapter  Google Scholar 

  24. Jain, S.D., Grauman, K.: Supervoxel-consistent foreground propagation in video. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 656–671. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_43

    Chapter  Google Scholar 

  25. Jang, W.D., Kim, C.S.: Semi-supervised video object segmentation using multiple random walkers. In: British Machine Vision Conference (2016)

    Google Scholar 

  26. Jerônimo, C., et al.: Graph-based supervoxel computation from iterative spanning forest. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) DGMM 2021. LNCS, vol. 12708, pp. 404–415. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76657-3_29

    Chapter  Google Scholar 

  27. Jun Koh, Y., Kim, C.S.: Primary object segmentation in videos based on region augmentation and reduction. In: CVPR, pp. 3442–3450 (2017)

    Google Scholar 

  28. Keuper, M., Andres, B., Brox, T.: Motion trajectory segmentation via minimum cost multicuts. In: ICCV, pp. 3271–3279 (2015). https://doi.org/10.1109/ICCV.2015.374

  29. Li, F., Kim, T., Humayun, A., Tsai, D., Rehg, J.M.: Video segmentation by tracking many figure-ground segments. In: ICCV (2013)

    Google Scholar 

  30. Liu, R., Wu, Z., Yu, S., Lin, S.: The emergence of objectness: learning zero-shot segmentation from videos. In: Advances in Neural Information Processing Systems, vol. 34, pp. 13137–13152 (2021)

    Google Scholar 

  31. Märki, N., Perazzi, F., Wang, O., Sorkine-Hornung, A.: Bilateral space video segmentation. In: CVPR, pp. 743–751 (2016)

    Google Scholar 

  32. Papa, J.P., Falcão, A.X., Suzuki, C.T.: Supervised pattern classification based on optimum-path forest. Int. J. Imaging Syst. Technol. 19(2), 120–131 (2009)

    Article  Google Scholar 

  33. Papazoglou, A., Ferrari, V.: Fast object segmentation in unconstrained video. In: ICCV, pp. 1777–1784 (2013)

    Google Scholar 

  34. Ponimatkin, G., Samet, N., Xiao, Y., Du, Y., Marlet, R., Lepetit, V.: A simple and powerful global optimization for unsupervised video object segmentation. In: WACV, pp. 5892–5903 (2023)

    Google Scholar 

  35. Rocha, L.M., Cappabianco, F.A., Falcão, A.X.: Data clustering as an optimum-path forest problem with applications in image analysis. Int. J. Imaging Syst. Technol. 19(2), 50–68 (2009)

    Article  Google Scholar 

  36. Tokmakov, P., Alahari, K., Schmid, C.: Learning video object segmentation with visual memory. In: ICCV, pp. 4481–4490 (2017)

    Google Scholar 

  37. Tsai, D., Flagg, M., Nakazawa, A., Rehg, J.M.: Motion coherent tracking using multi-label MRF optimization. IJCV 100, 190–202 (2012)

    Article  MathSciNet  Google Scholar 

  38. Tsai, Y.H., Yang, M.H., Black, M.J.: Video segmentation via object flow. In: CVPR, pp. 3899–3908 (2016)

    Google Scholar 

  39. Varas, D., Marques, F.: Region-based particle filter for video object segmentation. In: CVPR, pp. 3470–3477 (2014)

    Google Scholar 

  40. Vargas-Muñoz, J.E., Chowdhury, A.S., Alexandre, E.B., Galvão, F.L., Miranda, P.A.V., Falcão, A.X.: An iterative spanning forest framework for superpixel segmentation. TIP 28(7), 3477–3489 (2019)

    MathSciNet  Google Scholar 

  41. Vieira, D., Barcelos, I.B., Belém, F., Patrocínio, Z.K.G., Falcão, A.X., Guimarães, S.J.F.: Streaming graph-based supervoxel computation based on dynamic iterative spanning forest. In: Vasconcelos, V., Domingues, I., Paredes, S. (eds.) CIARP 2023. LNCS, vol. 14470, pp. 90–104. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-49249-5_7

    Chapter  Google Scholar 

  42. Wang, H., Liu, W., Xing, W.: Video object segmentation via random walks on two-frame graphs comprising superpixels. J. Vis. Commun. Image Represent. 80, 103293 (2021)

    Article  Google Scholar 

  43. Wang, S., Lu, H., Yang, F., Yang, M.H.: Superpixel tracking. In: ICCV, pp. 1323–1330. IEEE (2011)

    Google Scholar 

  44. Wang, W., Shen, J., Porikli, F., Yang, R.: Semi-supervised video object segmentation with super-trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 985–998 (2018)

    Article  Google Scholar 

  45. Wen, L., Du, D., Lei, Z., Li, S.Z., Yang, M.H.: Jots: Joint online tracking and segmentation. In: CVPR, pp. 2226–2234 (2015)

    Google Scholar 

  46. Winnemoller, H., Olsen, S.C., Gooch, B.: Real-time video abstraction. ACM Trans. Graph 25, 2006 (2006)

    Article  Google Scholar 

  47. Yang, C., Lamdouar, H., Lu, E., Zisserman, A., Xie, W.: Self-supervised video object segmentation by motion grouping. In: ICCV, pp. 7177–7188 (2021)

    Google Scholar 

  48. Yang, Y., Lai, B., Soatto, S.: Dystab: unsupervised object segmentation via dynamic-static bootstrapping. In: CVPR, pp. 2825–2835. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/CVPR46437.2021.00285

  49. Yang, Y., Loquercio, A., Scaramuzza, D., Soatto, S.: Unsupervised moving object detection via contextual information separation. In: CVPR, pp. 879–888 (2019)

    Google Scholar 

  50. Ye, V., Li, Z., Tucker, R., Kanazawa, A., Snavely, N.: Deformable sprites for unsupervised video decomposition. In: CVPR, pp. 2647–2656 (2022). https://doi.org/10.1109/CVPR52688.2022.00268

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Jamil F. Guimarães .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vieira, D., Barcelos, I.B., Patrocínio Jr, Z.K.G., Falcão, A., Guimarães, S.J.F. (2025). Towards Interactive Video Segmentation by Dynamic and Iterative Spanning Forest. In: Hernández-García, R., Barrientos, R.J., Velastin, S.A. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2024. Lecture Notes in Computer Science, vol 15368. Springer, Cham. https://doi.org/10.1007/978-3-031-76607-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-76607-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-76606-0

  • Online ISBN: 978-3-031-76607-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics