Skip to main content

Distributed Verifiable Random Function with Compact Proof

  • Conference paper
  • First Online:
Cyber Security, Cryptology, and Machine Learning (CSCML 2024)

Abstract

Verifiable Random Functions (VRFs) are cryptographic primitives that generate unpredictable randomness along with proofs that are verifiable, a critical requirement for blockchain applications in decentralized finance, online gaming, and more. Existing VRF constructions often rely on centralized entities, creating security vulnerabilities. Distributed VRFs (DVRFs) offer a decentralized alternative but face challenges like large proof sizes or dependence on computationally expensive bilinear pairings. In this research, a unique distributed VRF (DVRF) system called DVRFwCP with considerable improvements is proposed. DVRFwCP has constant-size proofs, which means that the size of the proof does not change based on the number of participants. This overcomes a significant drawback of earlier DVRF systems, which saw proof size increase with participant count. Furthermore, DVRFwCP produces more efficient verification than previous systems by eliminating the requirement for bilinear pairings throughout the verification process. However, DVRFwCP necessitates an extra step of interaction between the participants.

These innovations contribute to a more secure and scalable solution for generating verifiable randomness in decentralized environments.

We compare our construction to well-established DVRF instantiations such as DDH-DVRF and GLOW-DVRF while also pointing out the major improvement in the estimated gas cost of these algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhunov, A., Ben Sasson, E., Brand, T., Guthmann, L., Levy, A.: EIP-2028: transaction data gas cost reduction. Ethereum Improvement Proposals, no. 2028 (2019). https://eips.ethereum.org/EIPS/eip-2028. Accessed 30 Aug 2024

  2. Buser, M., et al.: Post-quantum verifiable random function from symmetric primitives in PoS blockchain. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.) ESORICS 2022. LNCS, vol. 13554, pp. 25–45. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17140-6_2

    Chapter  Google Scholar 

  3. Chainlink: chainlink VRF (2024). https://docs.chain.link/vrf. Accessed 30 Aug 2024

  4. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_7

    Chapter  Google Scholar 

  5. Dodis, Y.: Efficient construction of (distributed) verifiable random functions. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 1–17. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_1

    Chapter  Google Scholar 

  6. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4_28

    Chapter  Google Scholar 

  7. Esgin, M.F., et al.: Practical post-quantum few-time verifiable random function with applications to algorand. In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12675, pp. 560–578. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-64331-0_29

    Chapter  Google Scholar 

  8. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: 28th Annual Symposium on Foundations of Computer Science (SFCS 1987), pp. 427–438 (1987). https://doi.org/10.1109/SFCS.1987.4

  9. Galindo, D., Liu, J., Ordean, M., Wong, J.M.: Fully distributed verifiable random functions and their application to decentralised random beacons. In: 2021 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 88–102 (2021). https://doi.org/10.1109/EuroSP51992.2021.00017

  10. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. J. Cryptol. 20, 51–83 (2007). https://doi.org/10.1007/s00145-006-0347-3

    Article  MathSciNet  Google Scholar 

  11. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on Operating Systems Principles, SOSP 2017 pp. 51–68. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3132747.3132757

  12. Goldberg, S., Reyzin, L., Papadopoulos, D., Včelák, J.: Verifiable Random Functions (VRFs). RFC 9381 (2023). https://doi.org/10.17487/RFC9381. https://www.rfc-editor.org/info/rfc9381

  13. Hanke, T., Movahedi, M., Williams, D.: Dfinity technology overview series, consensus system (2018). https://doi.org/10.48550/arXiv.1805.04548

  14. Kate, A., Mangipudi, E.V., Maradana, S., Mukherjee, P.: Flexirand: output private (distributed) VRFs and application to blockchains. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, pp. 1776–1790 (2023). https://doi.org/10.1145/3576915.3616601

  15. Kuchta, V., Manulis, M.: Unique aggregate signatures with applications to distributed verifiable random functions. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 251–270. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02937-5_14

    Chapter  Google Scholar 

  16. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th Annual Symposium on Foundations of Computer Science (cat. No. 99CB37039), pp. 120–130. IEEE (1999). https://doi.org/10.1109/SFFCS.1999.814584

  17. Papadopoulos, D., et al.: Making NSEC5 practical for DNSSEC. Cryptology ePrint Archive, Paper 2017/099 (2017). https://eprint.iacr.org/2017/099

  18. Patel, S., Persiano, G., Seo, J.Y., Yeo, K.: Efficient secret sharing for large-scale applications. Cryptology ePrint Archive, Paper 2024/1045 (2024). https://doi.org/10.1145/3658644.3670379

  19. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_47

    Chapter  Google Scholar 

  20. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

    Chapter  Google Scholar 

  21. Polkadot: cryptography on polkadot (2024). https://wiki.polkadot.network/docs/learn-cryptography. Accessed 30 Aug 2024

  22. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://doi.org/10.1145/359168.359176

    Article  MathSciNet  Google Scholar 

  23. Vlasov, A., Olson, K., Stokes, A., Sanso, A.: EIP-2537: precompile for BLS12-381 curve operations [draft]. Ethereum improvement proposals, no. 2537 (2020). https://eips.ethereum.org/EIPS/eip-2537. Accessed 30 Aug 2024

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arda Buğra Özer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ağırtaş, A.R., Özer, A.B., Saygı, Z., Yayla, O. (2025). Distributed Verifiable Random Function with Compact Proof. In: Dolev, S., Elhadad, M., Kutyłowski, M., Persiano, G. (eds) Cyber Security, Cryptology, and Machine Learning. CSCML 2024. Lecture Notes in Computer Science, vol 15349. Springer, Cham. https://doi.org/10.1007/978-3-031-76934-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-76934-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-76933-7

  • Online ISBN: 978-3-031-76934-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics