Skip to main content

COSIS: An AI-Enabled Digital Transformation Framework Integrating Large Language Models and Key Performance Indicators

  • Conference paper
  • First Online:
Services Computing – SCC 2024 (SCF 2024 - SCC 2024 2024)

Abstract

The rapid advancement of Artificial Intelligence (AI) and Large Language Models (LLMs) has significantly transformed various sectors of society, compelling enterprises to undertake comprehensive digital transformations to remain competitive in the AI era. This paper introduces COSIS, an AI-enabled digital trans-formation framework comprising five key dimensions: Culture, Operation, Strategy, Innovation, and Service. The COSIS framework provides a structured approach for enterprises to navigate the complexities of digital transformation by integrating AI and LLM technologies into their core functions. For each dimension, the paper identifies specific key performance indicators (KPIs) to measure the effectiveness of AI-enabled transformations. These KPIs enable enterprises to quantitatively assess progress and outcomes, ensuring alignment with strategic objectives and facilitating continuous improvement. Additionally, the paper discusses the implications of AI and LLM technologies on enterprise management team building in the AI era.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901 (2020). https://doi.org/10.48550/arXiv.2005.14165

  2. Al-Mekhlal, M., Al-Buraik, M., Al-Lubli, M.: Digital transformation: AI-powered bot solutions and automation for customer services. In: 2023 International Conference on Digital Applications, Transformation & Economy (ICDATE), Miri, Sarawak, Malaysia, pp. 1–7 (2023). https://doi.org/10.1109/ICDATE58146.2023.10248458

  3. Campbell, M., Hoane, A.J., Hsu, F.-H.: Deep blue. Artif. Intell. 134(1–2), 57–83 (2002). https://doi.org/10.1016/S0004-3702(01)00129-1

    Article  Google Scholar 

  4. Ferrucci, D., et al.: Building watson: an overview of the DeepQA project. AI Mag. 31(3), 59–79 (2010). https://doi.org/10.1609/aimag.v31i3.2303

    Article  Google Scholar 

  5. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016). https://doi.org/10.1038/nature16961

    Article  Google Scholar 

  6. OpenAI: GPT-4. https://chatgpt.com/. Accessed 10 Sept 2024

  7. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30, pp. 5998–6008 (2017). https://doi.org/10.48550/arXiv.1706.03762

  8. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 4171–4186 (2019). https://doi.org/10.48550/arXiv.1810.04805

  9. Google: Gemini. https://gemini.google.com/. Accessed 1 Sept 2024

  10. Touvron, H., et al.: LLaMA: open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023). https://doi.org/10.48550/arXiv.2302.13971

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680 (2014). https://doi.org/10.48550/arXiv.1406.2661

  12. Eccles, R.G., Ioannou, I., Serafeim, G.: The impact of corporate sustainability on organizational processes and performance. Manage. Sci. 60(11), 2835–2857 (2014). https://doi.org/10.1287/mnsc.2014.1984

    Article  Google Scholar 

  13. Dweck, C.S., Yeager, D.S.: Mindsets: a view from two eras. Perspect. Psychol. Sci. 14(3), 481–496 (2019). https://doi.org/10.1177/1745691618804166

    Article  Google Scholar 

  14. Hogan, K., Warrenfeltz, R.: How microsoft uses a growth mindset to develop leaders. Harvard Bus. Rev. (2016). https://hbr.org/2016/10/how-microsoft-uses-a-growth-mindset-to-develop-leaders. Accessed 1 Sept 2024

  15. COSIS AI Enterprise. https://chatgpt.com/g/g-yrGj0UkMv-cosis-ai-enterprise. Accessed 1 Sept 2024

  16. Modulate: ToxMod. https://www.modulate.ai/toxmod/gaming/. Accessed 1 Sept 2024

  17. Harreld, J.B., O’Reilly, C.A., III., Tushman, M.L.: Dynamic capabilities at IBM: driving strategy into action. Calif. Manage. Rev. 49(4), 21–43 (2007)

    Article  Google Scholar 

  18. Descript: Overdub. https://www.descript.com/overdub/. Accessed 1 Sept 2024

  19. iSpeech: iSpeech. https://www.ispeech.org/. Accessed 1 Sept 2024

  20. Resemble AI: Resemble AI. https://www.resemble.ai/. Accessed 1 Sept 2024

  21. Zhang, L.-J., Shan, Z., Mao, Z.-H.: An optimal-control-based decision-making model and consulting methodology for service enterprises. IEEE Trans. Eng. Manage. 57(4), 607–619 (2010). https://doi.org/10.1109/TEM.2009.2034270

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Jie Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, LJ. et al. (2025). COSIS: An AI-Enabled Digital Transformation Framework Integrating Large Language Models and Key Performance Indicators. In: He, S., Zhang, LJ. (eds) Services Computing – SCC 2024. SCF 2024 - SCC 2024 2024. Lecture Notes in Computer Science, vol 15430. Springer, Cham. https://doi.org/10.1007/978-3-031-77000-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77000-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-76999-3

  • Online ISBN: 978-3-031-77000-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics