Abstract
Realizability asks whether there exists a program satisfying its specification. In this problem, we assume that each agent has her own objective and behaves rationally to satisfy her objective. Traditionally, the rationality of agents is modeled by a Nash equilibrium (NE), where each agent has no incentive to change her strategy because she cannot satisfy her objective by changing her strategy alone. However, an NE is not always an appropriate notion for the rationality of agents because the condition of an NE is too strong; each agent is assumed to know strategies of the other agents completely. In this paper, we use an epistemic model to define common knowledge of rationality of all agents (CKR). We define the verification problem as a variant of the realizability problem, based on CKR, instead of NE. We then analyze the complexity of the verification problems for the class of positional strategies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
For every NE \(\boldsymbol{s}\in S\), the epistemic model with a single world w where \(\boldsymbol{\sigma }(w)=\boldsymbol{s}\) satisfies \(w \in \mathop {\mathcal{C}\mathcal{K}}\nolimits RAT _{G,\boldsymbol{\alpha },M,S}\).
References
Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and reactive synthesis. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 921–962. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_27
Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2001)
Bonanno, G.: Epistemic foundations of game theory. In: van Ditmarsch, H. et al. (eds.) Handbook of Epistemic Logic, chap. 9, pp. 411–450, College Publications (2015)
Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans. Am. Math. Soc. 138, 295–311 (1969)
Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: 16th ACM Symposium on Principles of Programming Languages (POPL 1989), pp. 179–190 (1989)
Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 190–204. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2_16
Gutierrez, J., Najib, M., Perelli, G., Wooldridge, M.: On the complexity of rational verification. Ann. Math. Artif. Intell. 91, 409–430 (2023)
Ummels, M.: The complexity of nash equilibria in infinite multiplayer games. In: Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 20–34. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78499-9_3
Condurache, R., Filiot, E., Gentilini, R., Raskin, J.-F.: The complexity of rational synthesis. In: 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). LIPIcs, vol. 55, pp. 121:1–121:15 (2016)
Kremer, S., Raskin, J.-F.: A game-based verification of non-repudiation and fair exchange protocols. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 551–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44685-0_37
Chatterjee, K., Raman, V.: Synthesizing protocols for digital contract signing. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 152–168. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9_11
Kupferman, O., Perelli, G., Vardi, M.: Synthesis with rational environments. Ann. Math. Artif. Intell. 78(1), 3–20 (2016)
Kupferman, O., Shenwald, N.: The complexity of LTL rational synthesis. In: TACAS 2022. LNCS, vol. 13243, pp. 25–45. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_2
Bruyère, V., Raskin, J.-F., Tamines, C.: Pareto-rational verification. In: 33rd International Conference on Concurrency Theory (CONCUR 2022). LIPIcs.CONCUR.2022, pp. 33:1–33:20 (2022)
Brice, L., Raskin, J.-F., van den Bogaard, M.: Rational verification for Nash and subgame-perfect equilibria in graph games. In: 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023), pp. 26:1–26:15 (2023)
Aumann, R., Brandenburger, A.: Epistemic conditions for Nash equilibrium. Econometrica J. Econom. Soc. 1161–1180 (1995)
Polak, B.: Epistemic conditions for Nash equilibrium, and common knowledge of rationality. Econonetrica 67(3), 673–676 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nakanishi, R., Takata, Y., Seki, H. (2025). Verification with Common Knowledge of Rationality for Graph Games. In: Anutariya, C., Bonsangue, M.M. (eds) Theoretical Aspects of Computing – ICTAC 2024. ICTAC 2024. Lecture Notes in Computer Science, vol 15373. Springer, Cham. https://doi.org/10.1007/978-3-031-77019-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-77019-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-77018-0
Online ISBN: 978-3-031-77019-7
eBook Packages: Computer ScienceComputer Science (R0)