Skip to main content

Jump Complexity of Deterministic Finite Automata with Translucent Letters

  • Conference paper
  • First Online:
Theoretical Aspects of Computing – ICTAC 2024 (ICTAC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15373))

Included in the following conference series:

  • 134 Accesses

Abstract

We investigate a dynamical complexity measure defined for finite automata with translucent letters (FAwtl). Roughly, this measure counts the minimal number of necessary jumps for such an automaton in order to accept an input. The model considered here is the deterministic finite automaton with translucent letters (DFAwtl). Unlike in the case of the nondeterministic variant, the function describing the jump complexity of any DFAwtl is either bounded by a constant or it is linear. We give a polynomial-time algorithm for deciding whether the jump complexity of a DFAwtl is constant-bounded or linear and we prove that the equivalence problem for DFAwtl of \(\mathcal {O}(1)\) jump complexity is decidable. We also consider another fundamental problem for extensions of finite automata models, deciding whether the language accepted by a FAwtl is regular. We give a positive partial answer for DFAwtl over the binary alphabet, in contrast with the case of NFAwtl, where the problem is undecidable.

This study was supported by PNRR/2022/C9/MCID/I8 project 760096. It was also performed through the Core Program within the National Research, Development and Innovation Plan 2022-2027, carried out with the support of MRID, project no. 23020101(SIA-PRO), contract no 7N/2022, and project no. 23020301(SAFE-MAPS), contract no 7N/2022. The first author was supported by JSPS KAKENHI Grant Number 23K10976.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arroyo, F., Mitrana, V., Păun, A., Păun, M., Sánchez-Couso, J.: On the group memory complexity of extended finite automata over groups. J. Log. Algebraic Methods Program. 117, 100605 (2020). https://doi.org/10.1016/j.jlamp.2020.100605

    Article  MathSciNet  Google Scholar 

  2. Bensch, S., Bordihn, H., Holzer, M., Kutrib, M.: On input-revolving deterministic and nondeterministic finite automata. Inf. Comput. 207(11), 1140–1155 (2009). https://doi.org/10.1016/j.ic.2009.03.002

    Article  MathSciNet  Google Scholar 

  3. Bordihn, H., Mitrana, V.: On the degrees of non-regularity and non-context-freeness. J. Comput. Syst. Sci. 108, 104–117 (2020). https://doi.org/10.1016/j.jcss.2019.08.001

    Article  MathSciNet  Google Scholar 

  4. Chigahara, H., Fazekas, S., Yamamura, A.: One-way jumping finite automata. Int. J. Found. Comput. Sci. 27(3), 391–405 (2016). https://doi.org/10.1142/S0129054116500211

    Article  MathSciNet  Google Scholar 

  5. Fazekas, S., Mercas, R.: Sweep complexity revisited. In: Implementation and Application of Automata - 27th International Conference, CIAA 2023. Lecture Notes in Computer Science, vol. 14151, pp. 116–127. Springer (2023). https://doi.org/10.1007/978-3-031-26501-1_11

  6. Fazekas, S., Mercas, R., Wu, O.: Complexities for jumps and sweeps. J. Autom. Lang. Comb. 27(1–3), 131–149 (2022)

    MathSciNet  Google Scholar 

  7. Fazekas, S.Z., Hoshi, K., Yamamura, A.: Two-way deterministic automata with jumping mode. Theor. Comput. Sci. 864, 92–102 (2021). https://doi.org/10.1016/j.tcs.2021.02.030

    Article  MathSciNet  Google Scholar 

  8. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962). https://doi.org/10.1145/367766.368168

    Article  Google Scholar 

  9. Meduna, A., Zemek, P.: Jumping finite automata. Int. J. Found. Comput. Sci. 23(7), 1555–1578 (2012). https://doi.org/10.1142/S012905411250039X

    Article  MathSciNet  Google Scholar 

  10. Mitrana, V., Păun, A., Păun, M., Sánchez-Couso, J.: Jump complexity of finite automata with translucent letters. Theor. Comput. Sci. 992, 114450 (2024). https://doi.org/10.1016/j.tcs.2024.114450

    Article  MathSciNet  Google Scholar 

  11. Nagy, B., Otto, F.: Finite state acceptors with translucent letters. In: Proceedings of of the First International Workshop on AI Methods for Interdisciplinary Research in Language and Biology (BILC-2011), pp. 3–13. SCITEPRESS (2011)

    Google Scholar 

  12. Otto, F.: A survey on automata with translucent letters. In: Nagy, B. (ed.) Implementation and Application of Automata, pp. 21–50. Springer Nature Switzerland, Cham (2023)

    Chapter  Google Scholar 

  13. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer-Verlag, Berlin (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szilárd Zsolt Fazekas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zsolt Fazekas, S., Mitrana, V., Păun, A., Păun, M. (2025). Jump Complexity of Deterministic Finite Automata with Translucent Letters. In: Anutariya, C., Bonsangue, M.M. (eds) Theoretical Aspects of Computing – ICTAC 2024. ICTAC 2024. Lecture Notes in Computer Science, vol 15373. Springer, Cham. https://doi.org/10.1007/978-3-031-77019-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77019-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77018-0

  • Online ISBN: 978-3-031-77019-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics