Skip to main content

A Binary Particle Swarm Optimization Based Hybrid Feature Selection Method for Accident Severity Prediction

  • Conference paper
  • First Online:
Smart Applications and Data Analysis (SADASC 2024)

Abstract

According to recent reports, road traffic injuries are the leading cause of death among children and young adults. Various systems and strategies have been designed to reduce accident severity. With the development of data mining tools, the use of big traffic data and machine learning techniques holds potential for implementing effective road safety strategies. Using a dataset collected from Addis Ababa, Ethiopia, our research introduces an innovative severity prediction system integrating a hybrid Feature Selection (FS) approach, named OWABPSO, with machine learning algorithms. The OWABPSO approach combines a One-Way-ANOVA-based filter method with a Binary Particle Swarm Optimization-based wrapper method. Six algorithms, including K-Nearest Neighbors, Random Forest, Decision Tree, Light Gradient Boosting Machine, Artificial Neural Network, and Extreme Gradient Boosting, are proposed for severity prediction. Experimental outcomes of this work demonstrate that, compared to state-of-the-art methods, by combining our FS approach with Decision Tree-based classifiers, we achieved competitive results. Our study presents an effective integration of FS approaches in predicting accident severity levels, thus contributing to advanced road safety strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Road traffic injuries. https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries. Accessed 19 Nov 2023

  2. Jamal, A., et al.: Injury severity prediction of traffic crashes with ensemble machine learning techniques: a comparative study. Int. J. Inj. Contr. Saf. Promot. 28(4), 408–427 (2021). https://doi.org/10.1080/17457300.2021.1928233

    Article  MathSciNet  Google Scholar 

  3. Kumeda, B., Zhang, F., Zhou, F., Hussain, S., Almasri, A., Assefa, M.: Classification of road traffic accident data using machine learning algorithms. In: 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN), Chongqing, China, pp. 682–687. IEEE, June 2019. https://doi.org/10.1109/ICCSN.2019.8905362

  4. Zhou, Z.-H., Feng, J.: Deep forest: towards an alternative to deep neural networks. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia: International Joint Conferences on Artificial Intelligence Organization, pp. 3553–3559, August 2017. https://doi.org/10.24963/ijcai.2017/497

  5. Gan, J., Li, L., Zhang, D., Yi, Z., Xiang, Q.: An alternative method for traffic accident severity prediction: using deep forests algorithm. J. Adv. Transp. 2020, 1–13 (2020). https://doi.org/10.1155/2020/1257627

    Article  Google Scholar 

  6. Al Mamlook, R.E., Ali, A., Hasan, R.A., Mohamed Kazim, H.A.: Machine learning to predict the freeway traffic accidents-based driving simulation. In: 2019 IEEE National Aerospace and Electronics Conference (NAECON), Dayton, OH, USA, pp. 630–634. IEEE, July 2019. https://doi.org/10.1109/NAECON46414.2019.9058268

  7. Labib, Md.F., Rifat, A.S., Hossain, Md.M., Das, A.K., Nawrine, F.: Road accident analysis and prediction of accident severity by using machine learning in Bangladesh. In: 2019 7th International Conference on Smart Computing & Communications (ICSCC), Sarawak, Malaysia, Malaysia, pp. 1–5. IEEE, June 2019. https://doi.org/10.1109/ICSCC.2019.8843640

  8. Chen, H., Zhao, Y., Ma, X.: Critical factors analysis of severe traffic accidents based on Bayesian network in China. J. Adv. Transp. 2020, e8878265 (2020). https://doi.org/10.1155/2020/8878265

    Article  Google Scholar 

  9. Li, K., Xu, H., Liu, X.: Analysis and visualization of accidents severity based on LightGBM-TPE. Chaos Solitons Fractals 157, 111987 (2022). https://doi.org/10.1016/j.chaos.2022.111987

    Article  Google Scholar 

  10. Bedane, T.T.: Road traffic accident dataset of addis ababa city [Object], 02 November 2020. https://doi.org/10.17632/XYTV86278F.1

  11. Hamim, M., El Moudden, I., Pant, M.D., Moutachaouik, H., Hain, M.: A hybrid gene selection strategy based on fisher and ant colony optimization algorithm for breast cancer classification. Int. J. Online Eng. 17(02), 148 (2021). https://doi.org/10.3991/ijoe.v17i02.19889

    Article  Google Scholar 

  12. Hamim, M., El Mouden, I., Ouzir, M., Moutachaouik, H., Hain, M.: A novel dimensionality reduction approach to improve microarray data classification. IIUMEJ 22(1), 1–22 (2021). https://doi.org/10.31436/iiumej.v22i1.1447

    Article  Google Scholar 

  13. El Moudden, I., Ouzir, M., ElBernoussi, S.: Feature selection and extraction for class prediction in dysphonia measures analysis: a case study on Parkinson’s disease speech rehabilitation. Technol. Health Care off. J. Eur. Soc. Eng. Med. 25, 1–16 (2017). https://doi.org/10.3233/THC-170824

    Article  Google Scholar 

  14. Moutachaouik, H., El Moudden, I.: Mining prostate cancer behavior using parsimonious factors and shrinkage methods (2018)

    Google Scholar 

  15. Chu, C., Hsu, A.-L., Chou, K.-H., Bandettini, P., Lin, C.: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage 60(1), 59–70 (2012)

    Article  Google Scholar 

  16. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1), 273–324 (1997)

    Article  Google Scholar 

  17. Guyon, I., Elisseeff, A.: An introduction to feature extraction. In: Guyon, I., Nikravesh, M., Gunn, S., Zadeh, L.A. (eds.) Feature Extraction. SFSC, vol. 207, pp. 1–25. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-35488-8_1

  18. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948, November 1995. https://doi.org/10.1109/ICNN.1995.488968

  19. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: Computational Cybernetics and Simulation 1997 IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp. 4104–4108, October 1997. https://doi.org/10.1109/ICSMC.1997.637339

  20. Wei, J., et al.: A BPSO-SVM algorithm based on memory renewal and enhanced mutation mechanisms for feature selection. Appl. Soft Comput. 58, 176–192 (2017). https://doi.org/10.1016/j.asoc.2017.04.061

    Article  Google Scholar 

  21. BinSaeedan, W., Alramlawi, S.: CS-BPSO: hybrid feature selection based on chi-square and binary PSO algorithm for Arabic email authorship analysis. Knowl. Based Syst. 227, 107224 (2021). https://doi.org/10.1016/j.knosys.2021.107224

    Article  Google Scholar 

  22. Kushwaha, N., Pant, M.: Link based BPSO for feature selection in big data text clustering. Future Gener. Comput. Syst. 82, 190–199 (2018). https://doi.org/10.1016/j.future.2017.12.005

    Article  Google Scholar 

  23. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inform. Theory 13(1), 21–27 (1967). https://doi.org/10.1109/TIT.1967.1053964

    Article  Google Scholar 

  24. Hamim, M., El Moudden, I., Moutachaouik, H., Hain, M.: Decision tree model based gene selection and classification for breast cancer risk prediction. In: Hamlich, M., Bellatreche, L., Mondal, A., Ordonez, C. (eds.) SADASC 2020. CCIS, vol. 1207, pp. 165–177. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45183-7_12

  25. Breiman, L.: Random Forests–Random Features, p. 29 (1999)

    Google Scholar 

  26. Cachim, P.: Using artificial neural networks for calculation of temperatures in timber under fire loading. Constr. Build. Mater. 25, 4175–4180 (2011). https://doi.org/10.1016/j.conbuildmat.2011.04.054

    Article  Google Scholar 

  27. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems. Curran Associates, Inc. (2017). Accessed 14 Dec 2023. https://proceedings.neurips.cc/paper_files/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html

  28. Ibrahem Ahmed Osman, A., Najah Ahmed, A., Chow, M.F., Feng Huang, Y., El-Shafie, A.: Extreme gradient boosting (Xgboost) model to predict the groundwater levels in Selangor Malaysia. Ain Shams Eng. J. 12(2), 1545–1556 (2021). https://doi.org/10.1016/j.asej.2020.11.011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Hamim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamim, M., Enaanai, A., Jadli, A., Moutachaouik, H., EL Moudden, I. (2024). A Binary Particle Swarm Optimization Based Hybrid Feature Selection Method for Accident Severity Prediction. In: Hamlich, M., Dornaika, F., Ordonez, C., Bellatreche, L., Moutachaouik, H. (eds) Smart Applications and Data Analysis. SADASC 2024. Communications in Computer and Information Science, vol 2167. Springer, Cham. https://doi.org/10.1007/978-3-031-77040-1_4

Download citation

Publish with us

Policies and ethics