Skip to main content

Multi-Agents System in Healthcare: A Systematic Literature Review

  • Conference paper
  • First Online:
Smart Applications and Data Analysis (SADASC 2024)

Abstract

In the realm of healthcare, Multi-Agent Systems (MAS) have emerged as a promising technological framework, offering potential solutions to intricate challenges. This systematic literature review (SLR) systematically addresses key aspects of Multi-Agent Systems (MAS) in the healthcare domain by responding to crucial research questions. The review comprehensively outlines the application domains of MAS in healthcare. Furthermore, it explores the tangible benefits that MAS brings to healthcare. Moreover, the study uncovers the limits and challenges inherent in integrating MAS into healthcare systems, providing valuable insights for future research directions. The review also looks at the top features of MAS, such as adaptability, scalability, and autonomy. The objective of this SLR is to be a valuable resource for researchers, practitioners, and policymakers who are engaged in advancing the integration of MAS to optimize healthcare systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tian, S., et al.: Smart healthcare: making medical care more intelligent. Global Health J. 3(3), 62–65 (2019)

    Article  Google Scholar 

  2. Falco, M., Robiolo, G.: A systematic literature review in multi-agent systems: patterns and trends. In: 2019 XLV Latin American Computing Conference (CLEI). IEEE (2019)

    Google Scholar 

  3. Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: a survey. IEEE Access 6, 28573–28593 (2018)

    Article  Google Scholar 

  4. Kitchenham, B., et al.: Systematic literature reviews in software engineering-a systematic literature review. Inform. Softw. Technol. 51(1), 7–15 (2009)

    Article  Google Scholar 

  5. Keele, S.: Guidelines for performing systematic literature reviews in software engineering (2007)

    Google Scholar 

  6. Moher, D., et al.: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals Internal Med. 151(4), 264–269 (2009)

    Article  Google Scholar 

  7. Mengist, W., Soromessa, T., Legese, G.: Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 7, 100777 (2020)

    Article  Google Scholar 

  8. Isern, D., Moreno, A.: A systematic literature review of agents applied in healthcare. J. Med. Syst. 40, 1–14 (2016)

    Article  Google Scholar 

  9. Mutlag, A.A., et al.: Multi-agent systems in fog-cloud computing for critical healthcare task management model (CHTM) used for ECG monitoring. Sensors 21(20), 6923 (2021)

    Article  Google Scholar 

  10. Li, Y., et al.: Peer reviewed: agent-based modeling of chronic diseases: a narrative review and future research directions. Preventing Chronic Dis. 13 (2016)

    Google Scholar 

  11. Shakshuki, E., Reid, M.: Multi-agent system applications in healthcare: current technology and future roadmap. Proc. Comput. Sci. 52, 252–261 (2015)

    Article  Google Scholar 

  12. Ivanović, M., Ninković, S.: Personalized healthcare and agent technologies. In: Jezic, G., Kusek, M., Chen-Burger, Y.-H.J., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2017. SIST, vol. 74, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59394-4_1

    Chapter  Google Scholar 

  13. Chakraborty, S., Gupta, S.: Medical application using multi agent system-a literature survey. Int. J. Eng. Res. Appl. 4(2), 528–546 (2014)

    Google Scholar 

  14. Montenegro, J.L.Z., da Costa, C.A., da Rosa Righi, R.: Survey of conversational agents in health. Expert Syst. Appli. 129, 56-67 (2019)

    Google Scholar 

  15. Yu, C., et al.: Reinforcement learning in healthcare: a survey. ACM Comput. Surv. (CSUR) 55(1), 1–36 (2021)

    Article  Google Scholar 

  16. Iqbal, S., et al.: Application of intelligent agents in health-care. Artifi. Intell. Rev. 46, 83–112 (2016)

    Article  Google Scholar 

  17. Jabber, A.H., Obied, A.: A multi-agent system in e-health systemimplementing ebdi model. Turkish J. Comput. Math. Educ. 12(14), 2845–2859 (2021)

    Google Scholar 

  18. Mendes, S., Queiroz, J., Leitão, P.: Data driven multi-agent m-health system to characterize the daily activities of elderly people. In: 2017 12th Iberian Conference on Information Systems and Technologies (CISTI). IEEE (2017)

    Google Scholar 

  19. Park, H.S., Cho, H., Kim, H.S.: Development of a multi-agent m-health application based on various protocols for chronic disease self-management. J. Med. Syst. 40, 1–14 (2016)

    Article  Google Scholar 

  20. Neto, A.B.L., Andrade, J.P.B., Loureiro, T.C.J., de Campos, G.A.L., Fernandez, M.P.: A multi-agent system using fuzzy logic applied to eHealth. In: Novais, P., et al. (eds.) ISAmI2018 2018. AISC, vol. 806, pp. 216–223. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01746-0_25

    Chapter  Google Scholar 

  21. Safdari, R., et al.: A multi agent based approach for prehospital emergency management. Bull. Emergency & Trauma 5(3), 171 (2017)

    Google Scholar 

  22. Benhajji, N., Roy, D., Anciaux, D.: Patient-centered multi agent system for health care. IFAC-PapersOnLine 48(3), 710–714 (2015)

    Article  Google Scholar 

  23. Marcon, E., et al.: A multi-agent system based on reactive decision rules for solving the caregiver routing problem in home health care. Simulat. Model. Pract. Theory 74, 134–151 (2017)

    Article  Google Scholar 

  24. Mohammadzadeh, N., Safdari, R.: Chronic heart failure follow-up management based on agent technology. Healthcare Inform. Res. 21(4), 307–314 (2015)

    Article  Google Scholar 

  25. Wimmer, H., Yoon, V.Y., Sugumaran, V.: A multi-agent system to support evidence based medicine and clinical decision making via data sharing and data privacy. Decis. Support Syst. 88, 51–66 (2016)

    Article  Google Scholar 

  26. Jemal, H., et al.: A multi agent system for hospital organization. Inter. J. Mach. Learn. Comput. 5(1), 51–56 (2015)

    Article  Google Scholar 

  27. Alshehri, A., Alshahrani, F., Shah, H.: A precise survey on multi-agent in medical domains. Inter. J. Adv. Comput. Sci. Appli. 14(6), 22 (2023)

    Google Scholar 

  28. Regis, S., Manicom, O., Doncescu, A.: An agent-based model of COVID-19 pandemic and its variants using fuzzy subsets and real data applied in an island environment. Knowl. Eng. Rev. 38, e2 (2023)

    Article  Google Scholar 

  29. Jemmaa, A.B., Ltifi, H., Ayed, M.B.: Multi-agent architecture for visual intelligent remote healthcare monitoring system. In: Abraham, A., Han, S.Y., Al-Sharhan, S.A., Liu, H. (eds.) Hybrid Intelligent Systems. AISC, vol. 420, pp. 211–221. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27221-4_18

    Chapter  Google Scholar 

  30. Wan, K., et al.: Multi-target landmark detection with incomplete images via reinforcement learning and shape prior embedding. Medical Image Anal., 102875 (2023)

    Google Scholar 

  31. Nayyef, M.T., et al.: A review of medical image techniques and methods based on a multi-agent system. TEM J. 11(2), 811 (2022)

    Article  Google Scholar 

  32. Jemal, H., Kechaou, Z., Ayed, M.B.:Swarm intelligence and multi agent system in healthcare. In: 2014 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR). IEEE (2014)

    Google Scholar 

  33. Bennai, M.T., et al.: Multi-agent medical image segmentation: a survey. Comput. Methods Programs Biomed. 22, 107444 (2023)

    Google Scholar 

  34. Alkahtani, N.H., et al.: A semantic multi-agent system to exchange information between hospitals. Proc. Comput. Sci. 109, 704–709 (2017)

    Article  Google Scholar 

  35. Ahmed Kamal, M., et al.: Telemedicine, e-health, and multi-agent systems for chronic pain management. Clin. Pract. 13(2), 470–482 (2023)

    Article  Google Scholar 

  36. Alruwaili, F.F.: Artificial intelligence and multi agent based distributed ledger system for better privacy and security of electronic healthcare records. PeerJ Comput. Sci. 6, e323 (2020)

    Article  Google Scholar 

  37. Brondeel, K.C., et al.: Palliative care and multi-agent systems: a necessary paradigm shift. Clin. Pract. 13(2), 505–514 (2023)

    Article  Google Scholar 

  38. Reffad, H., Alti, A., Almuhirat, A.: A dynamic adaptive bio-inspired multi-agent system for healthcare task deployment. Eng. Technol. Appli. Sci. Res. 13(1), 10192–10198 (2023)

    Article  Google Scholar 

  39. Djenouri, Y., et al.: An intelligent collaborative image-sensing system for disease detection. IEEE Sensors J. 23(2), 947–954 (2022)

    Article  Google Scholar 

  40. Allioui, H., Sadgal, M., Elfazziki, A.: Intelligent environment for advanced brain imaging: multi-agent system for an automated Alzheimer diagnosis. Evol. Intel. 14, 1523–1538 (2021)

    Article  Google Scholar 

  41. Stranjak, A., Campagna, S.: Decentralised agent-based medical image reconstruction. Proc. Comput. Sci. 207, 2106–2115 (2022)

    Article  Google Scholar 

  42. Bennai, M.T., Guessoum, Z., Mazouzi, S., Cormier, S., Mezghiche, M.: Towards a generic multi-agent approach for medical image segmentation. In: An, B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds.) PRIMA 2017. LNCS (LNAI), vol. 10621, pp. 198–211. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69131-2_12

    Chapter  Google Scholar 

  43. Mohammadzadeh, N., Safdari, R., Rahimi, A.: Multi-agent system as a new approach to effective chronic heart failure management: key considerations. Healthcare Inform. Res. 19(3), 162–166 (2013)

    Article  Google Scholar 

  44. Khan, F.: Reyad.Application of intelligent multi agent based systems for E-healthcare security.arXiv preprint arXiv:2004.01256 (2020)

  45. Hurtado, C., Ramirez, M.R., Alanis, A., Vazquez, S.O., Ramirez, B., Manrique, E.: Towards a multi-agent system for an informative healthcare mobile application. In: Jezic, G., Chen-Burger, Y.-H.J., Howlett, R.J., Jain, L.C., Vlacic, L., Šperka, R. (eds.) KES-AMSTA-18 2018. SIST, vol. 96, pp. 215–219. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92031-3_21

    Chapter  Google Scholar 

  46. Tracy, M., Cerdá, M., Keyes, K.M.: Agent-based modeling in public health: current applications and future directions. Annu. Rev. Public Health 39, 77–94 (2018)

    Article  Google Scholar 

  47. Humayun, M., et al.: Agent-based medical health monitoring system. Sensors 22(8), 2820 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahma Elkamouchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elkamouchi, R., Daaif, A., Elguemmat, K. (2024). Multi-Agents System in Healthcare: A Systematic Literature Review. In: Hamlich, M., Dornaika, F., Ordonez, C., Bellatreche, L., Moutachaouik, H. (eds) Smart Applications and Data Analysis. SADASC 2024. Communications in Computer and Information Science, vol 2168. Springer, Cham. https://doi.org/10.1007/978-3-031-77043-2_16

Download citation

Publish with us

Policies and ethics