Skip to main content

Human-Robot Collaboration in Remanufacturing: An Application for Computer Disassembly

  • Conference paper
  • First Online:
Smart Applications and Data Analysis (SADASC 2024)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2168))

Included in the following conference series:

  • 108 Accesses

Abstract

This paper presents an experimental study of different approaches for disassembling an end-of-life (EOL) product, using a computer as an example, we have conceived a disassembly line consisting of two stations, where the first station is dedicated only to remove the screws through a human operator, whereas the second station is assigned to extract the desired components via two human operators. In the case study, three different approaches will be carried out, beginning with the manual disassembly method as a reference, given that this technique is the most used worldwide, then followed by robotic disassembly using a computer, Finally, a human-robot collaborative approach in which the human and the robot will simultaneously work at the extraction station. Tasks will be allocated to determine which task is best suited to everyone. The main contribution of this work is to determine the optimal disassembly method based on time, making the process more adaptable and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. BASEL CONVENTION, Controlling transboundary movements of hazardous wastes and their disposal. https://www.basel.int/Implementation/Ewaste/Overview/tabid/4063/Default.aspx

  2. Ylä-Mella, J., Keiski, R.L., Pongrácz, E.: End-of-Use vs. End-of-Life: when do consumer electronics become waste? Resources 11, 18 (2022). https://doi.org/10.3390/resources11020018

  3. Walle, A.H.: Remanufacturing marketing strategies and developing countries. J. Glob. Mark. 1, 75–90 (1988)

    Article  Google Scholar 

  4. Wang, Y.: Robotic disassembly and remanufacturing automation. In: 2022 27th International Conference on Automation and Computing (ICAC), p. 1 (2022)

    Google Scholar 

  5. Torres, F., Gil, P., Puente, S.T., et al.: Automatic PC disassembly for component recovery. Int. J. Adv. Manuf. Technol. 23, 39–46 (2004). https://doi.org/10.1007/s00170-003-1590-5

    Article  Google Scholar 

  6. Torres, F.: Santiago Puente Intelligent disassembly in the demanufacturing process. https://rua.ua.es/dspace/bitstream/10045/7315/3/Intelligent_Disassembly.pdf

  7. Umeda, Y., Miyaji, N., Shiraishi, Y., Fukushige, S.: Proposal of a design method for semi-destructive disassembly with split lines. CIRP Ann. 64(1), 29–32 (2015). https://doi.org/10.1016/j.cirp.2015.04.045

    Article  Google Scholar 

  8. ElSayed, A., Kongar, E., Gupta, S.M., et al.: A robotic-driven disassembly sequence generator for end-of-life electronic products. J. Intell. Robot. Syst. 68, 43–52 (2012). https://doi.org/10.1007/s10846-012-9667-8

    Article  Google Scholar 

  9. Meng, K., Guiyin, X., Peng, X., Kamal Youcef-Toumi, J., Li, I.: Intelligent disassembly of electric-vehicle batteries: a forward-looking overview. Resour. Conserv. Recycling 182, 106207 (2022). https://doi.org/10.1016/j.resconrec.2022.106207

    Article  Google Scholar 

  10. Prioli, J.P.J., Rickli, J.L.: Collaborative robot based architecture to train flexible automated disassembly systems for critical materials. Procedia Manuf. 51, 46–53 (2020). https://doi.org/10.1016/j.promfg.2020.10.008

    Article  Google Scholar 

  11. Foo G., Kara S., Pagnucco M.: Challenges of robotic disassembly in practice. Procedia CIRP 105, 513–518 (2022)

    Google Scholar 

  12. Mete, S., Çil, Z.A., Özceylan, E., Ağpak, K.: Resource constrained disassembly line balancing problem. IFAC-PapersOnLine 49(12), 921–925 (2016). https://doi.org/10.1016/j.ifacol.2016.07.893

  13. Ren, Y., Meng, L., Zhang, C., Lu, Q., Tian, G.: Multi-criterion decision making for disassembly line balancing problem. Procedia CIRP 80, 542–547 (2019). https://doi.org/10.1016/j.procir.2019.01.008

  14. Duta, L., Filip, F.G., Caciula, I.: Real time balancing of complex disassembly lines. IFAC Proc. 41(2), 913–918 (2008). https://doi.org/10.3182/20080706-5-KR-1001.00156

  15. HezerKara, S.: A network-based shortest route model for parallel disassembly line balancing problem. Int. J. Prod. Res. 53(6), 1849–1865 (2015). https://doi.org/10.1080/00207543.2014.965348

  16. Bushehri, F.I.: UNEP’s role in promoting environmentally sound management of e-waste. In: 5th ITU Symposium on ‘‘ICTs, the Environment and Climate Change’’ Cairo, Egypt (2010)

    Google Scholar 

  17. Md IslamHuda, T.: Material flow analysis (MFA) as a strategic tool in E-waste management: Applications, trends and future directions. J. Environ. Manage. 244(15), 344–361 (2019). https://doi.org/10.1016/j.jenvman.2019.05.062

  18. Movilla, N.A., Zwolinski, P., Dewulf, J., Mathieux, F.: A method for manual disassembly analysis to support the ecodesign of electronic displays. Resour. Conserv. Recycling 114, 42–58 (2016). https://doi.org/10.1016/j.resconrec.2016.06.018

  19. Kopacek, P., Kopacek, B.: Intelligent, flexible disassembly. Int. J. Adv. Manuf. Technol. 30, 554–560 (2006). https://doi.org/10.1007/s00170-005-0042-9

    Article  Google Scholar 

  20. Lambert, A.J.D.: Disassembly sequencing: a survey. Int. J. Prod. Res. 41(16), 3721–3759 (2003). https://doi.org/10.1080/0020754031000120078

    Article  Google Scholar 

  21. Knoth, R., Brandstotter, M., Kopacek, B., Kopacek, P.: Automated disassembly of electr(on)ic equipment. In: Conference Record 2002 IEEE International Symposium on Electronics and the Environment (Cat. No.02CH37273), San Francisco, CA, USA, pp. 290–294 (2002).https://doi.org/10.1109/ISEE.2002.1003282

  22. Santochi, M., Dini, G., Failli, F.: Disassembly for recycling, maintenance and remanufacturing: state of the art and perspectives. In: Kulianic, E. (eds) AMST’02 Advanced Manufacturing Systems and Technology. International Centre for Mechanical Sciences, vol. 437. Springer, Vienna (2002). https://doi.org/10.1007/978-3-7091-2555-7_6

  23. Letcher, B.: Old and new LCD television assemblies—disassembly differences. Report of the project sustainable recycling of flat panel displays—project HÅPLA a Swedish initiative towards a comprehensive solution, Private communication (2011)

    Google Scholar 

  24. Seliger, G., Keil, T., Rebafka, U., Stenzel, A.: Flexible disassembly tools. In: Proceedings of the 2001 IEEE International Symposium on Electronics and the Environment. 2001 IEEE ISEE (Cat. No.01CH37190), Denver, CO, USA, pp. 30–35 (2001). https://doi.org/10.1109/ISEE.2001.924498

  25. Guo, X., Bi, Z., Wang, J., Qin, S., Liu, S., Qi, L.: Reinforcement learning for disassembly system optimization problems: a survey. Int. J. Network Dyn. Intell. 2(1), 1–14 (2023). https://doi.org/10.53941/ijndi0201001

    Article  Google Scholar 

  26. Brogan, D., DiFilippo, N., Jouaneh, M.: ‘Deep learning computer vision for robotic disassembly and servicing applications.’ Array 12, 100094 (2021). https://doi.org/10.1016/j.array.2021.100094

    Article  Google Scholar 

  27. Deng, W., Liu, Q., Pham, D., Hu, J., Lam, K., Wang, Y., Zhou, Z.: Predictive exposure control for vision-based robotic disassembly using deep learning and predictive learning. Robot. Comput.-Integr. Manuf., 85 (2024). https://doi.org/10.1016/j.rcim.2023.102619

  28. Javier Ramírez, F., Aledo, J.A., Gamez, J.A., Pham, D.T.: Economic modelling of robotic disassembly in end-of-life product recovery for remanufacturing. Comput. Ind. Eng. 142, 106339 (2020). https://doi.org/10.1016/j.cie.2020.106339

  29. Chen, W.H., Wegener, K., Dietrich, F.: A robot assistant for unscrewing in hybrid human-robot disassembly. In: 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), Bali, Indonesia, pp. 536–541 (2014). https://doi.org/10.1109/ROBIO.2014.7090386

  30. Huang, J., Pham, D.T., Wang, Y., et al.: A case study in human–robot collaboration in the disassembly of press-fitted components. Proc. Instit. Mech. Eng. Part B: J. Eng. Manuf. 234(3), 654–664 (2020). https://doi.org/10.1177/0954405419883060

  31. Li, R., et al.: Unfastening of hexagonal headed screws by a collaborative robot. IEEE Trans. Autom. Sci. Eng. 17(3), 1455–1468 (July 2020). https://doi.org/10.1109/TASE.2019.2958712

    Article  Google Scholar 

  32. System service parts listing - IBM IntelliStation Z Pro (Type 6899). https://www.ibm.com/support/pages/system-service-parts-listing-ibm-intellistation-z-pro-type-6899

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soufiane Ameur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ameur, S., Tabaa, M., Hamlich, M., Hidila, Z., Bearee, R. (2024). Human-Robot Collaboration in Remanufacturing: An Application for Computer Disassembly. In: Hamlich, M., Dornaika, F., Ordonez, C., Bellatreche, L., Moutachaouik, H. (eds) Smart Applications and Data Analysis. SADASC 2024. Communications in Computer and Information Science, vol 2168. Springer, Cham. https://doi.org/10.1007/978-3-031-77043-2_6

Download citation

Publish with us

Policies and ethics