Abstract
Integrating the erratic production of renewable energy into the electricity grid poses numerous challenges. One approach to stabilising market prices and reducing energy losses due to curtailments is the deployment of batteries. Efficient electricity arbitrage is crucial to make investments in storage systems financially viable; trading solutions to achieve this rely on price forecasting techniques. This study delves into the application of Conformal Prediction (CP) techniques, including Ensemble Batch Prediction Intervals (EnbPI) and Sequential Predictive Conformal Inference for Time Series (SPCI), for generating probabilistic forecasts in the Irish electricity market. Recent advancements in CP have addressed temporal considerations inherent in time series forecasting, eliminating the need for exchangeability assumptions. Our study demonstrates that despite potential efficiency trade-offs, CP methods consistently yield precise and reliable prediction intervals, ensuring comprehensive coverage. We assess the impact of CP on the financial results of a simulated trading algorithm. Monetary outcomes achieved with EnbPI and SPCI outperform those of both split CP and traditional quantile regression models, highlighting the practical superiority of CP in electricity price forecasting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abramova, E., Bunn, D.: Optimal daily trading of battery operations using arbitrage spreads. Energies 14(16), 4931 (2021)
Dewolf, N., De Baets, B., Waegeman, W.: Valid prediction intervals for regression problems. Artif. Intell. Rev. 56(1), 577–613 (2023)
EirGrid. Renewable energy (2022). https://www.eirgridgroup.com/how-the-grid-works/renewables/
Barber, R.F., Candes, E.J., Ramdas, A., Tibshirani, R.J.: Conformal prediction beyond exchangeability. arXiv e-prints, pages arXiv–2202 (2022)
Gammerman, A., Vovk, V., Vapnik, V.: Learning by transduction. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI) (1998)
Ghosh, S., Shi, Y., Belkhouja, T., Yan, Y., Doppa, J., Jones, B.: Probabilistically robust conformal prediction. In: Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI), vol. 216, pp. 681–690 (2023)
Giacomini, R., White, H.: Tests of conditional predictive ability. Econometrica 74(6), 1545–1578 (2006)
Green, R., Vasilakos, N.: Market behaviour with large amounts of intermittent generation. Energy Policy 38(7), 3211–3220 (2010)
Jianming, H., Luo, Q., Tang, J., Heng, J., Deng, Y.: Conformalized temporal convolutional quantile regression networks for wind power interval forecasting. Energy 248, 123497 (2022)
Jensen, V., Bianchi, F.M., Anfinsen, S.N.: Ensemble conformalized quantile regression for probabilistic time series forecasting. IEEE Trans. Neural Netw. Learn. Syst. (2022)
Kath, C., Ziel, F.: Conformal prediction interval estimation and applications to day-ahead and intraday power markets. Int. J. Forecast. 37(2), 777–799 (2021)
Khajeh, H., Laaksonen, H.: Applications of probabilistic forecasting in smart grids: a review. Appl. Sci. 12(4), 1823 (2022)
Khosravi, A., Nahavandi, S.: Closure to the discussion of “prediction intervals for short-term wind farm generation forecasts’’ and “combined nonparametric prediction intervals for wind power generation’’ and the discussion of “combined nonparametric prediction intervals for wind power generation’’. IEEE Trans. Sustain. Energy 5(3), 1022–1023 (2014)
Krishnamurthy, D., Uckun, C., Zhou, Z., Thimmapuram, P.R., Botterud, A.: Energy storage arbitrage under day-ahead and real-time price uncertainty. IEEE Trans. Power Syst. 33(1), 84–93 (2017)
Narajewski, M.l., Ziel, F.: Optimal bidding on hourly and quarter-hourly day-ahead electricity price auctions: trading large volumes of power with market impact and transaction costs. arXiv preprint arXiv:2104.14204 (2021)
Lago, J., De Ridder, F., De Schutter, B.: Forecasting spot electricity prices: deep learning approaches and empirical comparison of traditional algorithms. Appl. Energy 221, 386–405 (2018)
Lago, J., Marcjasz, G., De Schutter, B., Weron, R.: Forecasting day-ahead electricity prices: a review of state-of-the-art algorithms, best practices and an open-access benchmark. Appl. Energy 293, 116983 (2021)
Leverger, C., et al.: Probabilistic forecasting of seasonal time series: combining clustering and classification for forecasting. In: International Conference on Time Series and Forecasting, pp. 47–63. Springer (2021)
Maciejowska, K., Nowotarski, J., Weron, R.: Probabilistic forecasting of electricity spot prices using factor quantile regression averaging. Int. J. Forecast. 32(3), 957–965 (2016)
Marcjasz, G., Uniejewski, B., Weron, R.: Probabilistic electricity price forecasting with narx networks: Combine point or probabilistic forecasts? Int. J. Forecast. 36(2), 466–479 (2020)
Marcjasz, G., Narajewski, M., Weron, R., Ziel, F.: Distributional neural networks for electricity price forecasting. arXiv preprint arXiv:2207.02832 (2022)
Martinez-Anido, C.B., Brinkman, G., Hodge, B.M.: The impact of wind power on electricity prices. Renew. Energy 94, 474–487 (2016)
Nowotarski, J., Weron, R.: Recent advances in electricity price forecasting: a review of probabilistic forecasting. Renew. Sustain. Energy Rev. 81, 1548–1568 (2018)
O’Connor, C., Collins, J., Prestwich, S., Visentin, A.: Electricity price forecasting in the irish balancing market. arXiv preprint arXiv:2402.06714 (2024a)
O’Connor, C., Collins, J., Prestwich, S., Visentin, A.: Optimizing quantile-based trading strategies in electricity arbitrage (2024b)
Oesterheld, C., Treutlein, J., Cooper, E., Hudson, R.: Incentivizing honest performative predictions with proper scoring rules. In: Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence, pp. 1564–1574 (2023)
O’Connor, C., Collins, J., Prestwich, S., Visentin, A.: Electricity price forecasting in the irish balancing market. Energy Strategy Rev. 54, 101436 (2024). ISSN 2211-467X. https://doi.org/10.1016/j.esr.2024.101436. https://www.sciencedirect.com/science/article/pii/S2211467X24001433
Salem, T.S., Langseth, H., Ramampiaro, H.: Prediction intervals: Split normal mixture from quality-driven deep ensembles. In: Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 1179–1187 (2020)
Shafer, G., Vovk, V.: A tutorial on conformal prediction. J. Mach. Learn. Res. 9(3) (2008)
Staffell, I., Rustomji, M.: Maximising the value of electricity storage. J. Energy Storage 8, 212–225 (2016)
Tohidi, Y., Gibescu, M.: Stochastic optimisation for investment analysis of flow battery storage systems. IET Renew. Power Gener. 13(4), 555–562 (2019)
Tzallas, P., Bezas, N., Moschos, I., Ioannidis, D., Tzovaras, D.: Probabilistic quantile multi-step forecasting of energy market prices: a UK case study. In: Artificial Intelligence Applications and Innovations, pp. 301–313. Springer (2022)
Uniejewski, B.: Smoothing quantile regression averaging: a new approach to probabilistic forecasting of electricity prices. arXiv preprint arXiv:2302.00411 (2023)
Uniejewski, B., Weron, R.: Regularized quantile regression averaging for probabilistic electricity price forecasting. Energy Econ. 95, 105121 (2021)
Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World, vol. 29. Springer (2005)
Xu, C., Xie, Y.: Conformal prediction interval for dynamic time-series. In: International Conference on Machine Learning, pp. 11559–11569. PMLR (2021)
Xu, C., Xie, Y.: Sequential predictive conformal inference for time series. In: International Conference on Machine Learning, pp. 38707–38727. PMLR (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
O’Connor, C., Prestwich, S., Visentin, A. (2025). Conformal Prediction Techniques for Electricity Price Forecasting. In: Lemaire, V., et al. Advanced Analytics and Learning on Temporal Data. AALTD 2024. Lecture Notes in Computer Science(), vol 15433. Springer, Cham. https://doi.org/10.1007/978-3-031-77066-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-77066-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-77065-4
Online ISBN: 978-3-031-77066-1
eBook Packages: Computer ScienceComputer Science (R0)