Skip to main content

Multivariate Human Activity Segmentation: Systematic Benchmark with ClaSP

  • Conference paper
  • First Online:
Advanced Analytics and Learning on Temporal Data (AALTD 2024)

Abstract

Human activity recognition (HAR) systems extract activities from observational data, such as sensor measurements from mobile devices, to provide for instance medical, fitness, or security information. A crucial initial step in these data analysis workflows is segmenting continuous numerical measurements into variable-sized segments that correspond to single activities. Human activity segmentation (HAS) enables downstream classification algorithms to label entire activities. Unfortunately, current time series segmentation (TSS) algorithms exhibit limited performance on multivariate sensor data due to complex temporal dynamics and irrelevant dimensions. This limits their applicability in HAR workflows. In this review, we provide a systematic benchmark of dimensionality reduction, model aggregation, and change point selection applied to the ClaSP TSS algorithm for real-world, multidimensional mobile sensing data. We evaluated the accuracy of the techniques in an experimental study using 250 data sets from the HAS challenge at ECML/PKDD and AALTD 2023. Our findings indicate that extending ClaSP for multivariate data, by aggregating internal representations, yields better results compared to reducing data dimensionality or selecting change points (CPs) from different channels. We report a new state of the art with 73% average accuracy on the challenge benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://ecml-aaltd.github.io/aaltd2023.

References

  1. Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutorials 15, 1192–1209 (2013)

    Article  MATH  Google Scholar 

  2. Zhou, L., Fischer, E., Brahms, C.M., Granacher, U., Arnrich, B.: Duo-gait: a gait dataset for walking under dual-task and fatigue conditions with inertial measurement units. Sci. Data 10(1), 543 (2023)

    Article  Google Scholar 

  3. Ahad, M.A.R., Antar, A.D., Ahmed, M.: Iot sensor-based activity recognition - human activity recognition. Intell. Syst. Ref. Libr. (2021)

    Google Scholar 

  4. Ermshaus, A., et al.: Human activity segmentation challenge @ ECML/PKDD’23. In: AALTD@ECML/PKDD (2023)

    Google Scholar 

  5. Ermshaus, A., Singh, S., Leser, U.: Time series segmentation applied to a new data set for mobile sensing of human activities. In: EDBT/ICDT Workshops (2023)

    Google Scholar 

  6. Truong, C., Oudre, L., Vayatis, N.: Selective review of offline change point detection methods. Signal Process. 167, 107299 (2020)

    Article  MATH  Google Scholar 

  7. Gharghabi, S., et al.: Domain agnostic online semantic segmentation for multi-dimensional time series. DMKD 33, 96–130 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Ermshaus, A., Schäfer, P., Leser, U.: ClaSP: parameter-free time series segmentation. DMKD 37, 1262–1300 (2023)

    Google Scholar 

  9. Matsuyama, H., Hiroi, K., Kaji, K., Yonezawa, T., Kawaguchi, N.: Ballroom dance step type recognition by random forest using video and wearable sensor. In" UbiComp/ISWC, pp. 774–780 (2019)

    Google Scholar 

  10. Harańczyk, G.: Change points detection in multivariate signal applied to human activity segmentation. In: AALTD@ECML/PKDD (2023)

    Google Scholar 

  11. Huang, T.-J., Zhou, Q.-L., Ye, H.-J., Zhan, D.-C.: Change point detection via synthetic signals. In: AALTD@ECML/PKDD (2023)

    Google Scholar 

  12. Ermshaus, A., Schäfer, P., Leser, U.: Raising the ClaSS of streaming time series segmentation. PVLDB 17(8), 1953–1966 (2024)

    Google Scholar 

  13. Multivariate ClaSP Code, Extended Experiments and Raw Results (2024). https://github.com/ermshaua/multivariate-clasp

  14. Ermshaus, A., Schäfer, P., Leser, U.: Window size selection in unsupervised time series analytics: a review and benchmark. In: AALTD@ECML/PKDD (2022)

    Google Scholar 

  15. Wang, C., Wu, K., Zhou, T., Cai, Z.: Time2State: an unsupervised framework for inferring the latent states in time series data. PACMMOD 1(1), 1–18 (2023)

    Google Scholar 

  16. Sadri, A., Ren, Y., Salim, F.D.: Information gain-based metric for recognizing transitions in human activities. PMC 38, 92–109 (2017)

    MATH  Google Scholar 

  17. Deldari, S., Smith, D.V., Sadri, A., Salim, F.D.: ESPRESSO: entropy and shape aware time-series segmentation for processing heterogeneous sensor data. In: IMWUT, vol. 4, pp. 77:1–77:24 (2020)

    Google Scholar 

  18. Tanaka, Y., Iwamoto, K., Uehara, K.: Discovery of time-series motif from multi-dimensional data based on mdl principle. Mach. Learn. 58, 269–300 (2005)

    Article  MATH  Google Scholar 

  19. Fodor, I.K.: A survey of dimension reduction techniques. Technical report, LLNL, Livermore, USA (2002)

    Google Scholar 

  20. Zhu, Y., et al.: Exploiting a novel algorithm and GPUs to break the ten quadrillion pairwise comparisons barrier for time series motifs and joins. KAIS 54, 203–236 (2017)

    MATH  Google Scholar 

  21. Yeh, C.-C.M., Kavantzas, N., Keogh, E.: Matrix profile vi: meaningful multidimensional motif discovery. In: ICDM, pp. 565–574, IEEE (2017)

    Google Scholar 

  22. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. JMLR 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arik Ermshaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ermshaus, A., Schäfer, P., Leser, U. (2025). Multivariate Human Activity Segmentation: Systematic Benchmark with ClaSP. In: Lemaire, V., et al. Advanced Analytics and Learning on Temporal Data. AALTD 2024. Lecture Notes in Computer Science(), vol 15433. Springer, Cham. https://doi.org/10.1007/978-3-031-77066-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77066-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77065-4

  • Online ISBN: 978-3-031-77066-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics