Skip to main content

Accurate and Efficient Real-World Fall Detection Using Time Series Techniques

  • Conference paper
  • First Online:
Advanced Analytics and Learning on Temporal Data (AALTD 2024)

Abstract

Falls pose a significant health risk, particularly for older people and those with specific medical conditions. Therefore, timely fall detection is crucial for preventing fall-related complications. Existing fall detection methods often have high false alarm or false negative rates, and many rely on handcrafted features. Additionally, most approaches are evaluated using simulated falls, leading to performance degradation in real-world scenarios. This paper explores a new fall detection approach leveraging real-world fall data and state-of-the-art time series techniques. The proposed method eliminates the need for manual feature engineering and has efficient runtime. Our approach achieves high accuracy, with false alarms and false negatives each as few as one in three days on FARSEEING, a large dataset of real-world falls (mean F\(_1\) score: 90.7%). We also outperform existing methods on simulated falls datasets, FallAllD and SisFall. Furthermore, we investigate the performance of models trained on simulated data and tested on real-world data. This research presents a real-time fall detection framework with potential for real-world implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/mlgig/ts_fall_detection.

References

  1. Becker, C., et al.: Proposal for a multiphase fall model based on real-world fall recordings with body-fixed sensors. Z. Gerontol. Geriatr. 45(8), 707 (2012)

    Article  MATH  Google Scholar 

  2. Beddiar, D.R., Oussalah, M., Nini, B.: Fall detection using body geometry and human pose estimation in video sequences. J. Vis. Commun. Image Represent. 82, 103407 (2022)

    Article  MATH  Google Scholar 

  3. Borrelli, J., Creath, R.A., Rogers, M.W.: A method for simulating forward falls and controlling impact velocity. MethodsX 11, 102399 (2023)

    Article  MATH  Google Scholar 

  4. Camp, K., Murphy, S., Pate, B.: Integrating fall prevention strategies into ems services to reduce falls and associated healthcare costs for older adults. Clin. Interventions Aging 561–569 (2024)

    Google Scholar 

  5. Chen, J., Kwong, K., Chang, D., Luk, J., Bajcsy, R.: Wearable sensors for reliable fall detection. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 3551–3554. IEEE (2006)

    Google Scholar 

  6. Choi, A., et al.: Deep learning-based near-fall detection algorithm for fall risk monitoring system using a single inertial measurement unit. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 2385–2394 (2022)

    Article  MATH  Google Scholar 

  7. Serramazza, D.I., Le Nguyen, T., Ifrim G.: A short tutorial for multivariate time series explanation using tscaptum. Softw. Impacts (2024), in Press. https://doi.org/10.1016/j.simpa.2024.100723, https://github.com/mlgig/tscaptum

  8. Dempster, A., Petitjean, F., Webb, G.I.: Rocket: exceptionally fast and accurate time series classification using random convolutional kernels. Data Min. Knowl. Disc. 34(5), 1454–1495 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dempster, A., Schmidt, D.F., Webb, G.I.: Hydra: competing convolutional kernels for fast and accurate time series classification. Data Min. Knowl. Disc. 37(5), 1779–1805 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dempster, A., Schmidt, D.F., Webb, G.I.: Quant: a minimalist interval method for time series classification. Data Min. Knowl. Discov. 1–26 (2024)

    Google Scholar 

  11. Dhariyal, B., Le Nguyen, T., Ifrim, G.: Back to basics: a sanity check on modern time series classification algorithms. In: Ifrim, G., et al. (eds.) Advanced Analytics and Learning on Temporal Data, pp. 205–229. Springer, Cham (2023)

    Chapter  MATH  Google Scholar 

  12. Flynn, M., Large, J., Bagnall, T.: The contract random interval spectral ensemble (c-RISE): the effect of contracting a classifier on accuracy. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds.) HAIS 2019. LNCS (LNAI), vol. 11734, pp. 381–392. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29859-3_33

    Chapter  MATH  Google Scholar 

  13. Hawkins, W.: Fourier transform resampling: theory and application [medical imaging]. In: 1996 IEEE Nuclear Science Symposium. Conference Record, vol. 3, pp. 1491–1495 (1996)

    Google Scholar 

  14. He, J., Zhang, Z., Wang, X., Yang, S.: A low power fall sensing technology based on FD-CNN. IEEE Sens. J. 19(13), 5110–5118 (2019)

    Article  MATH  Google Scholar 

  15. Hu, X., Chu, L., Pei, J., Liu, W., Bian, J.: Model complexity of deep learning: a survey. Knowl. Inf. Syst. 63, 2585–2619 (2021)

    Article  MATH  Google Scholar 

  16. Ismail-Fawaz, A., Devanne, M., Berretti, S., Weber, J., Forestier, G.: Lite: light inception with boosting techniques for time series classification. In: 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–10 (2023)

    Google Scholar 

  17. Ismail Fawaz, H., et al.: Inceptiontime: finding alexnet for time series classification. Data Min. Knowl. Disc. 34(6), 1936–1962 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jitpattanakul, A.: Wearable fall detection based on motion signals using hybrid deep residual neural network. In: Multi-disciplinary Trends in Artificial Intelligence: 15th International Conference, MIWAI 2022, Virtual Event, 17–19 November 2022, Proceedings. vol. 13651, p. 216. Springer (2022)

    Google Scholar 

  19. Khan, S.S., Hoey, J.: Review of fall detection techniques: a data availability perspective. Med. Eng. Phys. 39, 12–22 (2017)

    Article  MATH  Google Scholar 

  20. Klenk, J., et al.: The farseeing real-world fall repository: a large-scale collaborative database to collect and share sensor signals from real-world falls. Eur. Rev. Aging Phys. Activity 13, 1–7 (2016)

    Article  MATH  Google Scholar 

  21. La Blunda, L., Gutierrez-Madronal, L., Wagner, M.F., Medina-Bulo, I.: A wearable fall detection system based on body area networks. IEEE Access 8, 193060–193074 (2020)

    Article  Google Scholar 

  22. Le, H.L., Nguyen, D.N., Nguyen, T.H., Nguyen, H.N.: A novel feature set extraction based on accelerometer sensor data for improving the fall detection system. Electronics 11(7), 1030 (2022)

    Article  MATH  Google Scholar 

  23. Liu, C.P., et al.: Deep learning-based fall detection algorithm using ensemble model of coarse-fine CNN and GRU networks. In: 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–5. IEEE (2023)

    Google Scholar 

  24. Liu, J., et al.: A review of wearable sensors based fall-related recognition systems. Eng. Appl. Artif. Intell. 121, 105993 (2023)

    Article  MATH  Google Scholar 

  25. Liu, K.C., Hung, K.H., Hsieh, C.Y., Huang, H.Y., Chan, C.T., Tsao, Y.: Deep-learning-based signal enhancement of low-resolution accelerometer for fall detection systems. IEEE Trans. Cogn. Dev. Syst. 14(3), 1270–1281 (2021)

    Article  Google Scholar 

  26. Lubba, C.H., Sethi, S.S., Knaute, P., Schultz, S.R., Fulcher, B.D., Jones, N.S.: catch22: canonical time-series characteristics: selected through highly comparative time-series analysis. Data Min. Knowl. Disc. 33(6), 1821–1852 (2019)

    Article  Google Scholar 

  27. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, pp. 4768–4777. Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  28. Magalhães, C., Ribeiro, J., Leite, A., Solteiro Pires, E., Pavão, J.: Automatic fall detection using long short-term memory network. In: International Work-Conference on Artificial Neural Networks, pp. 359–371. Springer (2021)

    Google Scholar 

  29. Mekruksavanich, S., Jantawong, P., Hnoohom, N., Jitpattanakul, A.: Wearable fall detection based on motion signals using hybrid deep residual neural network. In: International Conference on Multi-disciplinary Trends in Artificial Intelligence, pp. 216–224. Springer (2022)

    Google Scholar 

  30. Middlehurst, M., et al.: aeon: a python toolkit for learning from time series. arXiv preprint arXiv:2406.14231 (2024)

  31. Montero-Odasso, M., et al.: World guidelines for falls prevention and management for older adults: a global initiative. Age Ageing 51(9), afac205 (2022)

    Google Scholar 

  32. Mosquera-Lopez, C., et al.: Automated detection of real-world falls: Modeled from people with multiple sclerosis. IEEE J. Biomed. Health Inform. 25(6), 1975–1984 (2020)

    Article  MATH  Google Scholar 

  33. Mosquera-Lopez, C., et al.: Automated detection of real-world falls: modeled from people with multiple sclerosis. IEEE J. Biomed. Health Inform. 25(6), 1975–1984 (2021)

    Article  MATH  Google Scholar 

  34. Musci, M., De Martini, D., Blago, N., Facchinetti, T., Piastra, M.: Online fall detection using recurrent neural networks on smart wearable devices. IEEE Trans. Emerg. Top. Comput. 9(3), 1276–1289 (2020)

    Article  Google Scholar 

  35. Nguyen, D.A., Pham, C., Argent, R., Caulfield, B., Le-Khac, N.A.: Model and empirical study on multi-tasking learning for human fall detection. Vietnam J. Comput. Sci. 1–14 (2024)

    Google Scholar 

  36. Nho, Y.H., Ryu, S., Kwon, D.S.: UI-GAN: generative adversarial network-based anomaly detection using user initial information for wearable devices. IEEE Sens. J. 21(8), 9949–9958 (2021)

    Article  MATH  Google Scholar 

  37. Özdemir, A.T.: An analysis on sensor locations of the human body for wearable fall detection devices: principles and practice. Sensors 16(8), 1161 (2016)

    Article  MATH  Google Scholar 

  38. Palmerini, L., Klenk, J., Becker, C., Chiari, L.: Accelerometer-based fall detection using machine learning: training and testing on real-world falls. Sensors 20(22), 6479 (2020)

    Article  MATH  Google Scholar 

  39. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Pernes, M., Agostinho, I., Bernardes, R.A., Fernandes, J.B., Baixinho, C.L.: Documenting fall episodes: a scoping review. Front. Public Health 11 (2023)

    Google Scholar 

  41. Ramanathan, A., McDermott, J.: Fall detection with accelerometer data using residual networks adapted to multi-variate time series classification. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2021)

    Google Scholar 

  42. Rastogi, S., Singh, J.: A systematic review on machine learning for fall detection system. Comput. Intell. 37(2), 951–974 (2021)

    Article  MATH  Google Scholar 

  43. Saleh, M., Abbas, M., Le Jeannes, R.B.: Fallalld: an open dataset of human falls and activities of daily living for classical and deep learning applications. IEEE Sens. J. 21(2), 1849–1858 (2020)

    Article  MATH  Google Scholar 

  44. Serramazza, D., Le Nguyen, T., Ifrim, G.: Improving the evaluation and actionability of explanation methods for multivariate time series classification. In: 2024 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (2024)

    Google Scholar 

  45. Silva, C.A., Casilari, E., García-Bermúdez, R.: Cross-dataset evaluation of wearable fall detection systems using data from real falls and long-term monitoring of daily life. Measurement 235, 114992 (2024)

    Article  Google Scholar 

  46. Son, H., et al.: A machine learning approach for the classification of falls and activities of daily living in agricultural workers. IEEE Access 10, 77418–77431 (2022)

    Article  MATH  Google Scholar 

  47. de Sousa, F.A.S.F., Escriba, C., Bravo, E.G.A., Brossa, V., Fourniols, J.Y., Rossi, C.: Wearable pre-impact fall detection system based on 3D accelerometer and subject’s height. IEEE Sens. J. 22(2), 1738–1745 (2021)

    Article  Google Scholar 

  48. Stack, E.: Falls are unintentional: studying simulations is a waste of faking time. J. Rehabilitation Assistive Technol. Eng. 4, 2055668317732945 (2017)

    Article  MATH  Google Scholar 

  49. Sucerquia, A., López, J.D., Vargas-Bonilla, J.F.: Sisfall: a fall and movement dataset. Sensors 17(1), 198 (2017)

    Article  MATH  Google Scholar 

  50. Vaishya, R., Vaish, A.: Falls in older adults are serious. Indian J. Orthopaedics 54, 69–74 (2020)

    Article  MATH  Google Scholar 

  51. Wang, G., Li, Q., Wang, L., Zhang, Y., Liu, Z.: Cmfall: a cascade and parallel multi-state fall detection algorithm using waist-mounted tri-axial accelerometer signals. IEEE Trans. Consum. Electron. 66(3), 261–270 (2020)

    Article  MATH  Google Scholar 

  52. World Health Organization: Step safely: strategies for preventing and managing falls across the life-course (2021)

    Google Scholar 

  53. Wu, X., Zheng, Y., Chu, C.H., Cheng, L., Kim, J.: Applying deep learning technology for automatic fall detection using mobile sensors. Biomed. Signal Process. Control 72, 103355 (2022)

    Article  MATH  Google Scholar 

  54. Yi, M.K., Han, K., Hwang, S.O.: Fall detection of the elderly using denoising LSTM-based convolutional variant autoencoder. IEEE Sens. J. (2024)

    Google Scholar 

  55. Zhao, B., Lu, H., Chen, S., Liu, J., Wu, D.: Convolutional neural networks for time series classification. J. Syst. Eng. Electron. 28(1), 162–169 (2017)

    Article  MATH  Google Scholar 

Download references

This study has received funding from Science Foundation Ireland [12/RC/2289_P2] at the Insight SFI Research Centre for Data Analytics and the European Union’s H2020 Marie Skłodowska-Curie Cofund programme, NeuroInsight [Grant ID: 101034252].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timilehin B. Aderinola .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Appendices

Appendix A Usability and Explainability

1.1 Appendix A.1 Estimated False Alarm and Miss Rates

Since we use an overlapping sliding window with a step size of 1 s, each classifier would process a total of \(1 \times 60 (\text {s}) \times 60 (\text {min}) = 3600\) samples per hour in practice. Taking the Hydra classifier as an example, we obtain a rough estimate of false alarm and miss rates per hour (Table 5) in the following manner.

Let P be the total number of falls, and N be the total number of ADLs per hour, such that \(P + N = 3600\). From the Fall: ADL ratio in Table 1, we know that

$$\begin{aligned} P = 0.14N \end{aligned}$$
(1)

So that

$$\begin{aligned} 0.14N + N = 3600 \end{aligned}$$
(2)

Hence, we can estimate the number of ADLs per hour as \(N=\frac{3600}{1.14} \approx 3158\), and the number of falls \(P=3600-3158=442\) per hour. Therefore, we estimate the number of misses per hour, FN as

$$\begin{aligned} FN = P \times (1 - Recall) \end{aligned}$$
(3)
$$\begin{aligned} FN = 442 \times (1-0.8913) \end{aligned}$$
(4)
$$\begin{aligned} FN \approx 48 \end{aligned}$$
(5)

Similarly, false alarms per hour, FP:

$$\begin{aligned} FP = N \times (1 - Specificity) \end{aligned}$$
(6)
$$\begin{aligned} FP = 3158 \times (1-0.986) \end{aligned}$$
(7)
$$\begin{aligned} FP \approx 44 \end{aligned}$$
(8)

Hence, miss rate \(=\frac{48}{3600} \approx 0.013\), and false alarm rate \(= \frac{44}{3600} \approx 0.012\) per hour.

Table 5. False Alarm Rate and Miss Rate Per Hour

1.2 Appendix A.2 Model Explanation

We use tscaptum [7, 44] to identify time intervals in motion data that influence classifier decisions on FARSEEING. tscaptum groups adjacent time points into segments of size c to enhance robustness and reduce runtime, with important intervals identified by iteratively masking segments. SHAP (SHapley Additive exPlanations) scores [27] are then obtained based on their impact on predictions.

We perform a subject-wise train-test split, using 30% (13 subjects) for testing and 70% (28 subjects) for training (see Fig. 7). Temporal SHAP scores are obtained on the test set with \(c=100\), representing a 1-s interval (sampled at 100 Hz). This produces equally distributed attribution scores within each chunk, matching the shape of the input sample.

We present attribution profiles for representative true positives, false positives, true negatives, and false negatives across all classifiers. Although the impact phase occurs within \(t=[1,2)\), attribution scores for Hydra (Fig. 8) and MultiRocketHydra (Fig. 10) suggest uniform importance across all phases. However, Rocket (Fig. 9), Catch22 (Fig. 11), and QUANT (Fig. 12) show high scores between the end of the falling phase and the start of the impact phase.

Fig. 7.
figure 7

Confusion matrices for time series classifiers on the FARSEEING test set.

Fig. 8.
figure 8

Hydra + SHAP temporal attribution profiles for some samples.

Fig. 9.
figure 9

Rocket + SHAP temporal attribution profiles for some samples.

Fig. 10.
figure 10

MultiRocketHydra + SHAP temporal attribution profiles for some samples.

Fig. 11.
figure 11

Catch22 + SHAP temporal attribution profiles for some samples.

Fig. 12.
figure 12

QUANT + SHAP temporal attribution profiles for some samples.

1.3 Appendix A.3 Model Runtime

In our experiments, we compute runtime in milliseconds (ms) as the time it takes each model to perform inference on one sample. As shown in Fig. 13, the tabular models run extremely fast. However, the time series models also run fast enough to be deployed in real-time, with MultiRocketHydra having the slowest inference speed of 144 ms per sample in one instance.

Fig. 13.
figure 13

Inference time per sample in milliseconds for all models.

Appendix B Preprocessing Choices

1.1 Appendix B.1 Univariate vs Multivariate

We performed a single train/test split experiment on FARSEEING to compare the performance of univariate acceleration magnitude with multivariate xyz acceleration signals. As shown in Fig. 14, using univariate magnitude signals with the time series classifiers showed significantly better scores in all metrics.

Fig. 14.
figure 14

Univariate acceleration magnitude vs. multivariate xyz acceleration on FARSEEING. Each box represents the performance of all time series classifiers.

1.2 Appendix B.2 Window Size and Post-fall Phase

We trained the time series models on the FARSEEING dataset with total sample window sizes ranging from 3 s (1-s post-fall phase) to 27 s (25-s post-fall phase). As shown in Fig. 15, longer post-fall phases improve AUC but don’t necessarily improve recall, specificity, or F\(_1\) scores. In fact, they may degrade performance and increase runtime. Experts recommend that a 5-s post-fall phase is sufficient to capture the necessary context.

Fig. 15.
figure 15

Effect of post-fall window size on model performance on the FARSEEING dataset.

Appendix C Extended Cross-Validation Results

Here, we give more detailed results, including cross-validation split sizes and the performance of each classifier on individual splits. We report the inference time per sample (T) in milliseconds, AUC, precision, recall, specificity, and F\(_1\) score.

Table 6. Cross-validation splits
Table 7. Performance of Tabular Models on the FARSEEING Dataset
Table 8. Performance of Tabular Models on the FallAllD Dataset
Table 9. Performance of Tabular Models on the SisFall Dataset
Table 10. Performance of Time Series Models on the FARSEEING Dataset
Table 11. Performance of Time Series Models on the FallAllD Dataset
Table 12. Performance of Time Series Models on the SisFall Dataset
Table 13. Results of Cross-Dataset Evaluation

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aderinola, T.B. et al. (2025). Accurate and Efficient Real-World Fall Detection Using Time Series Techniques. In: Lemaire, V., et al. Advanced Analytics and Learning on Temporal Data. AALTD 2024. Lecture Notes in Computer Science(), vol 15433. Springer, Cham. https://doi.org/10.1007/978-3-031-77066-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77066-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77065-4

  • Online ISBN: 978-3-031-77066-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics