Skip to main content

Change Detection in Multivariate Data Streams: Online Analysis with Kernel-QuantTree

  • Conference paper
  • First Online:
Advanced Analytics and Learning on Temporal Data (AALTD 2024)

Abstract

We present Kernel-QuantTree Exponentially Weighted Moving Average (KQT-EWMA), a non-parametric change-detection algorithm that combines the Kernel-QuantTree (KQT) histogram and the EWMA statistic to monitor multivariate data streams online. The resulting monitoring scheme is very flexible, since histograms can be used to model any stationary distribution, and practical, since the distribution of test statistics does not depend on the distribution of datastream in stationary conditions (non-parametric monitoring). KQT-EWMA enables controlling false alarms by operating at a pre-determined Average Run Length (\(ARL_0\)), which measures the expected number of stationary samples to be monitored before triggering a false alarm. The latter peculiarity is in contrast with most non-parametric change-detection tests, which rarely can control the \(ARL_0\) a priori. Our experiments on synthetic and real-world datasets demonstrate that KQT-EWMA can control \(ARL_0\) while achieving detection delays comparable to or lower than state-of-the-art methods designed to work in the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alippi, C., Boracchi, G., Carrera, D., Roveri, M.: Change detection in multivariate datastreams: likelihood and detectability loss. In: International Joint Conference on Artificial Intelligence (IJCAI), vol. 2, pp. 1368–1374 (2016)

    Google Scholar 

  2. Boracchi, G., Carrera, D., Cervellera, C., Macciò, D.: QuantTree: histograms for change detection in multivariate data streams. In: Proceedings of the 35th International Conference on Machine Learning, vol. 80, pp. 639–648. PMLR (2018)

    Google Scholar 

  3. Carrera, D., Boracchi, G.: Generating high-dimensional datastreams for change detection. Big Data Res. 11, 11–21 (2018)

    Article  MATH  Google Scholar 

  4. Frittoli, L., Carrera, D., Boracchi, G.: Change detection in multivariate datastreams controlling false alarms. In: Machine Learning and Knowledge Discovery in Databases. Research Track, pp. 421–436. Springer, Cham (2021)

    Google Scholar 

  5. Frittoli, L., Carrera, D., Boracchi, G.: Nonparametric and online change detection in multivariate datastreams using QuantTree. IEEE Trans. Knowl. Data Eng. 25(8), 8328–8342 (2022)

    MATH  Google Scholar 

  6. Kelly, M., Longjohn, R., Nottingham, K.: The UCI machine learning repository. https://archive.ics.uci.edu

  7. Keriven, N., Garreau, D., Poli, I.: NEWMA: a new method for scalable model-free online change-point detection. IEEE Trans. Signal Process. 68, 3515–3528 (2020). https://doi.org/10.1109/TSP.2020.2990597

    Article  MathSciNet  MATH  Google Scholar 

  8. Kuncheva, L.I.: Change detection in streaming multivariate data using likelihood detectors. IEEE Trans. Knowl. Data Eng. 25(5), 1175–1180 (2013)

    Article  MATH  Google Scholar 

  9. Li, S., Xie, Y., Dai, H., Song, L.: Scan B-statistic for kernel change-point detection. Seq. Anal. 38(4), 503–544 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ross, G.J., Tasoulis, D.K., Adams, N.M.: Nonparametric monitoring of data streams for changes in location and scale. Technometrics 53(4), 379–389 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Souza, V.M.A., dos Reis, D.M., Maletzke, A.G., Batista, G.E.A.P.A.: Challenges in benchmarking stream learning algorithms with real-world data. Data Min. Knowl. Discov. 34, 1805–1858 (2020)

    Google Scholar 

  12. Stucchi, D., Rizzo, P., Folloni, N., Boracchi, G.: Kernel QuantTree. In: Proceedings of the 40th International Conference on Machine Learning (2023)

    Google Scholar 

  13. Vershynin, R.: How close is the sample covariance matrix to the actual covariance matrix? J. Theor. Probab. 25 (2010). https://doi.org/10.1007/s10959-010-0338-z

  14. Wei, S., Xie, Y.: Online kernel CUSUM for change-point detection (2022). https://doi.org/10.48550/arXiv.2211.15070

  15. Zamba, K.D., Hawkins, D.M.: A multivariate change-point model for statistical process control. Technometrics 48(4), 539–549 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelangelo Olmo Nogara Notarianni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nogara Notarianni, M.O., Leveni, F., Stucchi, D., Frittoli, L., Boracchi, G. (2025). Change Detection in Multivariate Data Streams: Online Analysis with Kernel-QuantTree. In: Lemaire, V., et al. Advanced Analytics and Learning on Temporal Data. AALTD 2024. Lecture Notes in Computer Science(), vol 15433. Springer, Cham. https://doi.org/10.1007/978-3-031-77066-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77066-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77065-4

  • Online ISBN: 978-3-031-77066-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics