Skip to main content

Secure Similar Adjacent Vertex Query on Sparse Graph Data in Cloud Environment

  • Conference paper
  • First Online:
Edge Computing – EDGE 2024 (EDGE 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15424))

Included in the following conference series:

  • 67 Accesses

Abstract

The development of cloud computing and the widespread application of cloud services have made outsourcing services more convenient. The need for individuals and businesses to store and manipulate the graph data they generate is growing rapidly. The unreliability and insecurity of cloud servers make outsourcing graph data a great risk of information leakage. To effectively protect data security, encrypting outsourced data is a useful method. The adjacent vertex query is a very commonly used and fundamental operation, and similarity search is a widely used and powerful tool to improve the scope and functionality of queries. After outsourcing encrypted sparse graph data to cloud servers, it becomes very inconvenient to use and manipulate the data. In this work, we present a scheme to realize the adjacent vertex query supporting similarity search on sparse graph data in cloud environment (SSAQ), which also protects the security of the information. This work uses edit distance and the searchable encryption principle to construct query index, and next implement the similar adjacent vertex query on cloud server. This work provides a formal security analysis, and also gives the experimental comparison and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jiang, J., Wang, D., Zhang, G., et al.: QPause: quantum-resistant password-protected data outsourcing for cloud storage. IEEE Trans. Serv. Comput. 17(3), 1140–1153 (2024)

    Article  Google Scholar 

  2. Liu, Q., Peng, Y., Jiang, H., et al.: Authorized keyword search on mobile devices in secure data outsourcing. IEEE Trans. Mob. Comput. 23(5), 4181–4195 (2024)

    Article  Google Scholar 

  3. Zhou, Z., Wan, Y., Cui, Q., et al.: Blockchain-based secure and efficient secret image sharing with outsourcing computation in wireless networks. IEEE Trans. Wireless Commun. 23(1), 423–435 (2024)

    Article  Google Scholar 

  4. Liu, W., Wen, D., Wang, H., et al.: Skyline nearest neighbor search on multi-layer graphs. In: 2014 IEEE 35th International Conference on Data Engineering Workshops, IEEE: Piscataway, N.J., USA, 2019, pp. 259–265 (2019)

    Google Scholar 

  5. Potamias, M., Bonchi, F., Gionis, A., Kollios, G., et al.: K-nearest neighbors in uncertain graphs. Proc. VLDB Endowment 3(1), 997–1008 (2010)

    Article  Google Scholar 

  6. Wang, R., Yan, J., Yang, X., et al.: Combinatorial learning of robust deep graph matching: an embedding based approach. IEEE Trans. Pattern Anal. Mach. Intell. 45(6), 6984–7000 (2023)

    Article  Google Scholar 

  7. Bazgan, C., Pontoizeau, T., Tuza, Z., et al.: Finding a potential community in networks. Theoret. Comput. Sci. 769, 32–42 (2019)

    Article  MathSciNet  Google Scholar 

  8. Ferrer-Cid, P., Barceló-Ordinas, J., García-Vidal, J., et al.: Volterra graph-based outlier detection for air pollution sensor networks. IEEE Trans. Netw. Sci. Eng. 9(4), 2759–2771 (2023)

    Article  Google Scholar 

  9. Li, X., Ye, H., Li, T., et al.: Efficient and secure outsourcing of differentially private data publishing with multiple evaluators. IEEE Trans. Dependable Secure Comput. 19(1), 67–76 (2022)

    Article  Google Scholar 

  10. Zhang, X., Zhao, J., Xu, C., et al.: DOPIV: post-quantum secure identity-based data outsourcing with public integrity verification in cloud storage. IEEE Trans. Serv. Comput. 15(1), 334–345 (2022)

    Article  Google Scholar 

  11. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: Proceeding 2000 IEEE Symposium on Security and Privacy (S &P’00), IEEE: Los Alamitos, CA, USA, 2000; pp. 44–55 (2000)

    Google Scholar 

  12. Chang, Y.C., Howser, G., Mitzenmacher, M., Madria, S.: Privacy preserving keyword searches on remote encrypted data. In: Third International Conference, Applied Cryptography and Network Security (ACNS’05), pp. 442–455. Springer: Berlin, Germany (2005). https://doi.org/10.1007/11496137_30

  13. Goh, E.J.: Secure indexes. In: Cryptology ePrint Archive, Report 2003/216 (2003)

    Google Scholar 

  14. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, S.: Searchable symmetric encryption: improved definitions and efficient constructions. In: Proceedings of the 13th ACM Conference on Computer and Communications Security (ccs’06), pp. 79–88. ACM: Alexandria, VA, United states (2006)

    Google Scholar 

  15. Boneh, D., Crescenzo, G.D., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search revisited. In: International Conference on Computational Science and Its Applications (ICCSA’08), pp. 1249–1259. Springer: Berlin, Germany (2008). https://doi.org/10.1007/978-3-540-69839-5_96

  16. Wang, C., Ren, K., Yu, S., et al.: Achieving usable and privacy-assured similarity search over outsourced cloud data. In: Proceedings of the IEEE INFOCOM 2012, pp. 451–459. IEEE: Orlando, FL, USA (2012)

    Google Scholar 

  17. Mei, Z., Yu, J., Zhang, C., et al.: Secure multi-dimensional data retrieval with access control and range query in the cloud. Inf. Syst. 122, 102343 (2024)

    Article  Google Scholar 

  18. Oyamada, R.S., Shimomura, L.C., Barbon, S., et al.: A meta-learning configuration framework for graph-based similarity search indexes. Inf. Syst. 112, 102123 (2023)

    Google Scholar 

  19. Chase, M., Kamara, S., et al.: Structured encryption and controlled disclosure. Structured encryption and controlled disclosure. In: Cryptology and Information Security 2010, pp. 577–594 (2010)

    Google Scholar 

  20. Cao, N., Yang, Z., Wang, C., Ren, K., Lou, W.: Privacy-preserving query over encrypted graph-structured data in cloud computing. In: Proceedings of the 2011 31st International Conference on Distributed Computing Systems (ICDCS’11), IEEE: Los Alamitos, CA, USA, (2011), pp. 393–402 (2011)

    Google Scholar 

  21. Shen, M., Ma, B., Zhu, L., et al.: Cloud-based approximate constrained shortest distance queries over encrypted graphs with privacy protection. IEEE Trans. Inf. Forensics Secur. 13, 940–953 (2018)

    Article  Google Scholar 

  22. Ciucanu, R., Lafourcade, P., et al.: GOOSE: a secure framework for graph outsourcing and SPARQL evaluation. In: Proceedings of Data and Applications Security and Privacy - 34th Annual IFIP WG 11.3 Conference (DBSec 2020), pp. 347–366. Springer: Regensburg, Germany (2020). https://doi.org/10.1007/978-3-030-49669-2_20

  23. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman & Hall/CRC (2007)

    Google Scholar 

  24. Singhal, A.: Modern information retrieval: a brief overview. Bull. IEEE Comput. Soc. Tech. Committee Data Eng. 24(4), 35–43 (2001)

    Google Scholar 

  25. Leskovec, J., Lang, K.J., Dasgupta, A., et al.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)

    Article  MathSciNet  Google Scholar 

  26. Klimt, B., Yang, Y.: Introducing the Enron corpus. In: First Conference on Email and Anti-Spam (CEAS’04), pp. 1–2. Google, Microsoft, etc.: Mountain View, CA, USA (2004)

    Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the editor and the reviewers’ comments and helpful suggestions. This research is supported in part by the National Nature Science Foundation of China (No. 62262033 and 62062045), the Visiting Engineer Cooperation Project of Zhejiang Province (No. FG2023061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, Y., Wu, B., Shi, J., Zhang, C., Xu, D. (2025). Secure Similar Adjacent Vertex Query on Sparse Graph Data in Cloud Environment. In: Zeng, J., Zhang, LJ. (eds) Edge Computing – EDGE 2024. EDGE 2024. Lecture Notes in Computer Science, vol 15424. Springer, Cham. https://doi.org/10.1007/978-3-031-77069-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77069-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77068-5

  • Online ISBN: 978-3-031-77069-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics